Comparison of isolation media for recovery of Burkholderia cepacia complex from respiratory secretions of patients with cystic fibrosis. (1/346)

Burkholderia cepacia selective agar (BCSA) has previously been devised for isolation of B. cepacia from respiratory secretions of patients with cystic fibrosis and tested under research laboratory conditions. Here we describe a study in which BCSA, oxidation-fermentation polymyxin bacitracin lactose agar (OFPBL), and Pseudomonas cepacia agar (PCA) were compared in routine culture procedures for the ability to grow B. cepacia and inhibit other organisms. Three hundred twenty-eight specimens from 209 patients at two pediatric centers and 328 specimens from 109 adults were tested. Plates were inoculated, incubated, and read for quality and quantity of growth at 24, 48, and 72 h. Five (1.5%) specimens from 4 (1.9%) children and 75 (22.9%) specimens from 16 (14.7%) adults grew B. cepacia complex. At 24, 48, and 72 h, BCSA achieved 43, 93, and 100% detection, respectively; OFPBL achieved 26, 84, and 96%, respectively; and PCA achieved 33, 74, and 84% detection, respectively. Quality was assessed as pinpoint or good growth. At 24 h, most cultures growing B. cepacia complex had pinpoint colonies. By 48 and 72 h, 48 and 69% of B. cepacia complex cultures, respectively, had good growth on BCSA, while on OFPBL 19 and 30%, respectively, had good growth and on PCA 11 and 18%, respectively, had good growth. BCSA was superior to OFPBL and PCA in suppressing organisms other than B. cepacia complex; 40 non-B. cepacia complex organisms were isolated from BCSA, 263 were isolated from OFPBL, and 116 were isolated from PCA. We conclude that BCSA is superior to OFPBL and PCA in its ability to support the growth of B. cepacia complex and to suppress other respiratory organisms.  (+info)

Structural elucidation of a novel exopolysaccharide produced by a mucoid clinical isolate of Burkholderia cepacia. Characterization of a trisubstituted glucuronic acid residue in a heptasaccharide repeating unit. (2/346)

The structure of the exopolysaccharide (EPS) produced by a clinical isolate of Burkholderia cepacia isolated from a patient with fibrocystic lung disease has been investigated. By means of methylation analyses, carboxyl reduction, partial depolymerization by fuming HCl and chemical degradations such as Smith degradation, lithiumethylenediamine degradation and beta-elimination, supported by GC/MS and NMR spectroscopic analyses, the repeat unit of the EPS has been identified and was shown to correspond to the acidic branched heptasaccharide with the following structure: [formula: see text]. This partially acetylated acidic polymer, distinguished by the presence of the less usual D-isomer of rhamnose and of a trisubstituted glucuronic acid residue, could represent the main EPS produced by this bacterial species.  (+info)

An epidemic of burkholderia cepacia transmitted between patients with and without cystic fibrosis. (3/346)

Burkholderia cepacia is an important pathogen in cystic fibrosis (CF) and an infrequent cause of nosocomial infection in non-CF patients. This report describes a large hospital outbreak that appeared to involve both patient groups, a previously unrecognized phenomenon. Ribotype restriction fragment length polymorphism (RFLP) profiles and pulsed-field gel electrophoresis-resolved macrochromosomal RFLPs were analyzed, a ribotype-based phylogenic tree was constructed, and case-control and cohort studies were performed. A single dominant clone was found in both CF and non-CF groups. Phylogenic analysis suggests that it has evolved independently and that such highly transmissible strains can emerge rapidly and randomly. Acquisition risk in the CF patients was linked to hospitalization (odds ratio=5.47, P=.0158, confidence interval=1. 28-26.86) and was associated with significantly increased mortality rates. Infection control policies must now consider this threat of transmission between non-CF and CF patients.  (+info)

Identification of Burkholderia spp. in the clinical microbiology laboratory: comparison of conventional and molecular methods. (4/346)

Cystic fibrosis (CF) predisposes patients to bacterial colonization and infection of the lower airways. Several species belonging to the genus Burkholderia are potential CF-related pathogens, but microbiological identification may be complicated. This situation is not in the least due to the poorly defined taxonomic status of these bacteria, and further validation of the available diagnostic assays is required. A total of 114 geographically diverse bacterial isolates, previously identified in reference laboratories as Burkholderia cepacia (n = 51), B. gladioli (n = 14), Ralstonia pickettii (n = 6), B. multivorans (n = 2), Stenotrophomonas maltophilia (n = 3), and Pseudomonas aeruginosa (n = 11), were collected from environmental, clinical, and reference sources. In addition, 27 clinical isolates putatively identified as Burkholderia spp. were recovered from the sputum of Dutch CF patients. All isolates were used to evaluate the accuracy of two selective growth media, four systems for biochemical identification (API 20NE, Vitek GNI, Vitek NFC, and MicroScan), and three different PCR-based assays. The PCR assays amplify different parts of the ribosomal DNA operon, either alone or in combination with cleavage by various restriction enzymes (PCR-restriction fragment length polymorphism [RFLP] analysis). The best system for the biochemical identification of B. cepacia appeared to be the API 20NE test. None of the biochemical assays successfully grouped the B. gladioli strains. The PCR-RFLP method appeared to be the optimal method for accurate nucleic acid-mediated identification of the different Burkholderia spp. With this method, B. gladioli was also reliably classified in a separate group. For the laboratory diagnosis of B. cepacia, we recommend parallel cultures on blood agar medium and selective agar plates. Further identification of colonies with a Burkholderia phenotype should be performed with the API 20NE test. For final confirmation of species identities, PCR amplification of the small-subunit rRNA gene followed by RFLP analysis with various enzymes is recommended.  (+info)

Differentiation of Burkholderia species by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene and application to cystic fibrosis isolates. (5/346)

Burkholderia cepacia, which is an important pathogen in cystic fibrosis (CF) owing to the potential severity of the infections and the high transmissibility of some clones, has been recently shown to be a complex of five genomic groups, i.e., genomovars I, II (B. multivorans), III, and IV and B. vietnamiensis. B. gladioli is also involved, though rarely, in CF. Since standard laboratory procedures fail to provide an accurate identification of these organisms, we assessed the ability of restriction fragment length polymorphism (RFLP) analysis of amplified 16S ribosomal DNA (rDNA), with the combination of the patterns obtained with six endonucleases, to differentiate Burkholderia species. This method was applied to 16 type and reference strains of the genus Burkholderia and to 51 presumed B. cepacia clinical isolates, each representative of one clone previously determined by PCR ribotyping. The 12 Burkholderia type strains tested were differentiated, including B. cepacia, B. multivorans, B. vietnamiensis, and B. gladioli, but neither the genomovar I and III reference strains nor the genomovar IV reference strain and B. pyrrociniaT were distinguishable. CF clinical isolates were mainly distributed in RFLP group 2 (which includes B. multivoransT) and RFLP group 1 (which includes B. cepacia genomovar I and III reference strains, as well as nosocomial clinical isolates). Two of the five highly transmissible clones in French CF centers belonged to RFLP group 2, and three belonged to RFLP group 1. The remaining isolates either clustered with other Burkholderia species (B. cepacia genomovar IV or B. pyrrocinia, B. vietnamiensis, and B. gladioli) or harbored unique combinations of patterns. Thus, if further validated by hybridization studies, PCR-RFLP of 16S rDNA could be an interesting identification tool and contribute to a better evaluation of the respective clinical risks associated with each Burkholderia species or genomovar in patients with CF.  (+info)

Analysis of fliC variation among clinical isolates of Burkholderia cepacia. (6/346)

PCR and restriction fragment length polymorphism (RFLP) typing of flagellin genes (fliC) from 57 clinical isolates of Burkholderia cepacia indicated that only type 11 flagellins were present. Twenty-two isolates previously identified as the epidemic UK cystic fibrosis strain were indistinguishable by this method, as were 11 isolates from a pseudo-outbreak in Senegal. Other clinical isolates, including 19 from disparate sources in Malaysia, were separated into nine fliC RFLP groups, exhibiting a large degree of divergence. When isolates were indistinguishable by fliC genotyping, their similarity was confirmed by whole genome macro-restriction analysis with pulsed-field gel electrophoresis following XbaI digestion. The variation in fliC sequences of B. cepacia was far greater than that with B. pseudomallei, supporting the view that 'B. cepacia', as currently defined, may comprise several different genomic species.  (+info)

A murine model for infection with Burkholderia cepacia with sustained persistence in the spleen. (7/346)

Burkholderia cepacia is an opportunistic pathogen that causes severe systemic infections in patients with chronic granulomatous disease (CGD) or with cystic fibrosis (CF), but its mechanisms of virulence are poorly understood. We developed a murine model of systemic infection in wild-type (WT) and gamma interferon knockout (GKO) BALB/c mice to facilitate dissection of components of pathogenicity and host defense. Both WT and GKO mice were susceptible to chronic splenic infection with B. cepacia, but not with Pseudomonas aeruginosa. B. cepacia strains from patients with CGD persisted longer than those from CF patients. C57BL/6 mice were the most susceptible murine strain; bacteria persisted in the spleen for 2 months. DBA/2, BALB/c, and A/J strains of mice were relatively resistant to infection. Certain strains of B. cepacia complex can persist in the murine spleen after systemic infection; this may provide clues to its virulence in compromised hosts, such as those with CGD and CF.  (+info)

Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. (8/346)

Members of the taxonomically diverse Burkholderia cepacia complex have become a major health risk for patients with cystic fibrosis (CF). Although patient-to-patient transmission of B. cepacia strains has been well-documented, very little is known about possible vehicles of transmission and reservoirs for these micro-organisms. In this work, it is shown that strains of the B. cepacia complex can survive within different isolates of the genus Acanthamoeba. Trophozoites containing bacteria developed profuse cytoplasmic vacuolization. Vacuolization was not detected in trophozoites infected with live Escherichia coli or heat-killed B. cepacia, or by incubation of trophozoites with filter-sterilized culture supernatants, indicating that metabolically active intracellular bacteria are required for the formation of vacuoles. Experiments with two different B. cepacia strains and two different Acanthamoeba isolates revealed that bacteria display a low level of intracellular replication approximately 72-96 h following infection. In contrast, extracellular bacteria multiplied efficiently on by-products released by amoebae. The findings suggest that amoebae may be a reservoir for B. cepacia and possibly a vehicle for transmission of this opportunistic pathogen among CF patients.  (+info)