Subcellular localization and in vivo identification of the putative movement protein of olive latent virus 2. (1/8)

The gene encoding the 36.5 kDa ('36K') nonstructural protein located on RNA3 of olive latent virus 2 (OLV-2) was cloned, expressed with the Escherichia coli pGEX-2T system and the purified protein used to raise a polyclonal antiserum. Immunoblot analysis of OLV-2-infected Nicotiana benthamiana plants showed that the 36K protein accumulated in the early stages of infection and was associated with a subcellular fraction enriched in cytoplasmic membranes. In infected cells there were tubular structures, some containing virus-like particles, scattered in the cytoplasm or protruding from or penetrating the cell wall at the plasmodesmata. Immunogold labelling localized the 36K protein in the plasmodesmata of OLV-2-infected cells and showed it to be associated with virus-containing tubules. Leaf trichome cells of N. tabacum plants, transformed with a 36K-green fluorescent protein (GFP) fusion construct, revealed localized fluorescence in the cell walls, possibly due to association of the fusion protein with plasmodesmata. When the same 36K-GFP fusion protein was expressed in N. tabacum protoplasts, long tubular fluorescent structures protruded from the protoplast surface, suggesting that the 36K protein is responsible for tubule induction. The conclusion is drawn that this protein is likely to be the OLV-2 movement protein, mediating cell-to-cell virus movement, and that movement is by a tubule-guided mechanism.  (+info)

Translation of a nonpolyadenylated viral RNA is enhanced by binding of viral coat protein or polyadenylation of the RNA. (2/8)

On entering a host cell, positive-strand RNA virus genomes have to serve as messenger for the translation of viral proteins. Efficient translation of cellular messengers requires interactions between initiation factors bound to the 5'-cap structure and the poly(A) binding protein bound to the 3'-poly(A) tail. Initiation of infection with the tripartite RNA genomes of alfalfa mosaic virus (AMV) and viruses from the genus Ilarvirus requires binding of a few molecules of coat protein (CP) to the 3' end of the nonpolyadenylated viral RNAs. Moreover, infection with the genomic RNAs can be initiated by addition of the subgenomic messenger for CP, RNA 4. We report here that extension of the AMV RNAs with a poly(A) tail of 40 to 80 A-residues permitted initiation of infection independently of CP or RNA 4 in the inoculum. Specifically, polyadenylation of RNA 1 relieved an apparent bottleneck in the translation of the viral RNAs. Translation of RNA 4 in plant protoplasts was autocatalytically stimulated by its encoded CP. Mutations that interfered with CP binding to the 3' end of viral RNAs reduced translation of RNA 4 to undetectable levels. Possibly, CP of AMV and ilarviruses stimulates translation of viral RNAs by acting as a functional analogue of poly(A) binding protein or other cellular proteins.  (+info)

The brome mosaic virus RNA3 intergenic replication enhancer folds to mimic a tRNA TpsiC-stem loop and is modified in vivo. (3/8)

The genome of brome mosaic virus (BMV), a positive-strand RNA virus in the alphavirus-like superfamily, consists of three capped, messenger-sense RNAs. RNA1 and RNA2 encode viral replication proteins 1a and 2a, respectively. RNA3 encodes the 3a movement protein and the coat protein, which are essential for systemic infection in plants but dispensable for RNA3 replication in plants and yeast. A subset of the 250-base intergenic region (IGR), the replication enhancer (RE), contains all cis-acting signals necessary for a crucial, early template selection step, the 1a-dependent recruitment of RNA3 into replication. One of these signals is a motif matching the conserved box B sequence of RNA polymerase III transcripts. Using chemical modification with CMCT, kethoxal, DMS, DEPC, and lead, we probed the structure of the IGR in short, defined transcripts and in full-length RNA3 in vitro, in yeast extracts, and in whole yeast cells. Our results reveal a stable, unbranched secondary structure that is not dependent on the surrounding ORF sequences or on host factors within the cell. Functional 5' and 3' deletions that defined the minimal RE in earlier deletion studies map to the end of a common helical segment. The box B motif is presented as a hairpin loop of 7 nt closed by G:C base pairs in perfect analogy to the TpsiC-stem loop in tRNA(Asp). An adjacent U-rich internal loop, a short helix, and another pyrimidine-rich loop were significantly protected from base modifications. This same arrangement is conserved between BMV and cucumoviruses CMV, TAV, and PSV. In the BMV box B loop sequence, uridines corresponding to tRNA positions T54 and psi55 were found to be modified in yeast and plants to 5mU and pseudouridine. Together with the aminoacylated viral 3'-end, this is thus the second RNA replication signal within BMV where the virus has evolved a tRNA structural mimicry to a degree that renders it a substrate for classical tRNA modification reactions in vivo.  (+info)

Complete nucleotide sequence of Pelargonium zonate spot virus and its relationship with the family Bromoviridae. (4/8)

The complete sequence of the Pelargonium zonate spot virus (PZSV) genome was determined. It comprises 8477 nt, distributed in three positive-strand RNA species encoding four proteins. RNA-1 is 3383 nt long, with an ORF that encodes a polypeptide with a molecular mass of 108 419 Da (denoted protein 1a). This protein contains the conserved sequence motifs I-III of type I methyltransferases and the seven consensus motifs of the helicases of superfamily 1. RNA-2 is 2435 nt long and encodes a major polypeptide with a molecular mass of 78 944 Da (denoted protein 2a), which shows identity to the RNA-dependent RNA polymerases of positive-strand RNA viruses. RNA-3 is 2659 nt long and contains two major ORFs. The first ORF is located in the 5' portion of the genome and sequence comparison of the putative translation product revealed similarities with the 30K superfamily of virus movement proteins. The second ORF is located in the 3' half and encodes the viral coat protein, which is expressed via a subgenomic RNA, RNA-4. The transcription initiation site of RNA-4 maps to the intergenic region of RNA-3. The organization of the PZSV genome, including the primary structure of terminal non-coding regions, strongly suggests that this virus belongs to the family Bromoviridae. The overall biological and genomic characteristics of PZSV indicate affinities in diverging directions with one or other of the virus species in this family, thus enabling it to be considered as a possible representative of a new genus within the family Bromoviridae.  (+info)

The promiscuous evolutionary history of the family Bromoviridae. (5/8)

 (+info)

Pelargonium zonate spot virus is transmitted vertically via seed and pollen in tomato. (6/8)

 (+info)

The nucleotide sequence of RNA1 and RNA2 of olive latent virus 2 and its relationships in the family Bromoviridae. (7/8)

The complete nucleotide sequence of RNA1 and RNA2 of olive latent virus 2 (OLV-2), a virus with quasi-spherical to bacilliform particles and a non-polyadenylated tripartite ssRNA genome, was determined. RNA1 consists of 3126 nucleotides and contains a single open reading frame (ORF) coding for a polypeptide with a molecular mass of 102689 Da (p1a). RNA2 is also a monocistronic molecule, 2734 nt in length, coding for a polypeptide with a molecular mass of 90631 Da (p2a). The translation products of RNA1 and RNA2 possess the motifs proper to helicase, methyltransferase (RNA1) and RNA polymerase (RNA2), suggesting that both are involved in the replication of the viral RNA. The similarities found between OLV-2 and members of the Bromoviridae in some properties and in the sequences of all genomic products (including p1a and p2a) are strongly indicative that it belongs in this family. OLV-2, however, did not show a direct relationship with any of the current genera in the family. Rather, it revealed homologies in diverging directions with one or other of the Bromoviridae genus, thus qualifying as the possible representative of a new taxon in this family.  (+info)

Ilarviruses encode a Cucumovirus-like 2b gene that is absent in other genera within the Bromoviridae. (8/8)

We found that RNA 2 of the four ilarviruses sequenced to date encodes an additional conserved open reading frame (ORF), 2b, that overlaps the 3' end of the previously known ORF, 2a. A novel RNA species of 851 nucleotides was found to accumulate to high levels in plants infected with spinach latent virus (SpLV). Further analysis showed that RNA 4A is a subgenomic RNA of RNA 2 and encodes all of ORF 2b. Moreover, a protein species of the size expected for SpLV ORF 2b was translated in vitro from the RNA 4A-containing virion RNAs. The data support the suggestion that the SpLV 2b protein is translated in vivo. The 2b gene of ilarviruses, which is not encoded by alfamoviruses and bromoviruses, shares several features with the previously reported cucumovirus 2b gene; however, their encoded proteins share no detectable sequence similarities. The evolutionary origin of the 2b gene is discussed.  (+info)