An efficient DNA sequencing strategy based on the bacteriophage mu in vitro DNA transposition reaction. (1/284)

A highly efficient DNA sequencing strategy was developed on the basis of the bacteriophage Mu in vitro DNA transposition reaction. In the reaction, an artificial transposon with a chloramphenicol acetyltransferase (cat) gene as a selectable marker integrated into the target plasmid DNA containing a 10.3-kb mouse genomic insert to be sequenced. Bacterial clones carrying plasmids with the transposon insertions in different positions were produced by transforming transposition reaction products into Escherichia coli cells that were then selected on appropriate selection plates. Plasmids from individual clones were isolated and used as templates for DNA sequencing, each with two primers specific for the transposon sequence but reading the sequence into opposite directions, thus creating a minicontig. By combining the information from overlapping minicontigs, the sequence of the entire 10,288-bp region of mouse genome including six exons of mouse Kcc2 gene was obtained. The results indicated that the described methodology is extremely well suited for DNA sequencing projects in which considerable sequence information is on demand. In addition, massive DNA sequencing projects, including those of full genomes, are expected to benefit substantially from the Mu strategy.  (+info)

SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). (2/284)

In bacteria, SsrA RNA recognizes ribosomes stalled on defective messages and acts as a tRNA and mRNA to mediate the addition of a short peptide tag to the C-terminus of the partially synthesized nascent polypeptide chain. The SsrA-tagged protein is then degraded by C-terminal-specific proteases. SmpB, a unique RNA-binding protein that is conserved throughout the bacterial kingdom, is shown here to be an essential component of the SsrA quality-control system. Deletion of the smpB gene in Escherichia coli results in the same phenotypes observed in ssrA-defective cells, including a variety of phage development defects and the failure to tag proteins translated from defective mRNAs. Purified SmpB binds specifically and with high affinity to SsrA RNA and is required for stable association of SsrA with ribosomes in vivo. Formation of an SmpB-SsrA complex appears to be critical in mediating SsrA activity after aminoacylation with alanine but prior to the transpeptidation reaction that couples this alanine to the nascent chain. SsrA RNA is present at wild-type levels in the smpB mutant arguing against a model of SsrA action that involves direct competition for transcription factors.  (+info)

Criss-crossed interactions between the enhancer and the att sites of phage Mu during DNA transposition. (3/284)

A bipartite enhancer sequence (composed of the O1 and O2 operator sites) is essential for assembly of the functional tetramer of phage Mu transposase (MuA) on supercoiled DNA substrates. A three-site interaction (LER) between the left (L) and right (R) ends of Mu (att sites) and the enhancer (E) precedes tetramer assembly. We have dissected the role of the enhancer in tetramer assembly by using two transposase proteins that have a common att site specificity, but are distinct in their enhancer specificity. The activity of these proteins on substrates containing hybrid enhancers reveals a 'criss-crossed' pattern of interaction between att and enhancer sites. The left operator, O1, of the enhancer interacts specifically with the transposase subunit at the R1 site (within the right att sequence) that is responsible for cleaving the left end of Mu. The right operator, O2, shows a preferential interaction with the transposase subunit at the L1 site (within the left att sequence) that is responsible for cleaving the right end of Mu.  (+info)

Natural synthesis of a DNA-binding protein from the C-terminal domain of DNA gyrase A in Borrelia burgdorferi. (4/284)

We have identified a 34 kDa DNA-binding protein with an HU-like activity in the Lyme disease spirochete Borrelia burgdorferi. The 34 kDa protein is translated from an abundant transcript initiated within the gene encoding the A subunit of DNA gyrase. Translation of the 34 kDa protein starts at residue 499 of GyrA and proceeds in the same reading frame as full-length GyrA, resulting in an N-terminal-truncated protein. The 34 kDa GyrA C-terminal domain, although not homologous, substitutes for HU in the formation of the Type 1 complex in Mu transposition, and complements an HU-deficient strain of Escherichia coli. This is the first example of constitutive expression of two gene products in the same open reading frame from a single gene in a prokaryotic cellular system.  (+info)

Replacement of the bacteriophage Mu strong gyrase site and effect on Mu DNA replication. (5/284)

The bacteriophage Mu strong gyrase site (SGS) is required for efficient replicative transposition and functions by promoting the synapsis of prophage termini. To look for other sites which could substitute for the SGS in promoting Mu replication, we have replaced the SGS in the middle of the Mu genome with fragments of DNA from various sources. A central fragment from the transposing virus D108 allowed efficient Mu replication and was shown to contain a strong gyrase site. However, neither the strong gyrase site from the plasmid pSC101 nor the major gyrase site from pBR322 could promote efficient Mu replication, even though the pSC101 site is a stronger gyrase site than the Mu SGS as assayed by cleavage in the presence of gyrase and the quinolone enoxacin. To look for SGS-like sites in the Escherichia coli chromosome which might be involved in organizing nucleoid structure, fragments of E. coli chromosomal DNA were substituted for the SGS: first, repeat sequences associated with gyrase binding (bacterial interspersed mosaic elements), and, second, random fragments of the entire chromosome. No fragments were found that could replace the SGS in promoting efficient Mu replication. These results demonstrate that the gyrase sites from the transposing phages possess unusual properties and emphasize the need to determine the basis of these properties.  (+info)

Organization and dynamics of the Mu transpososome: recombination by communication between two active sites. (6/284)

Movement of transposable genetic elements requires the cleavage of each end of the element genome and the subsequent joining of these cleaved ends to a new target DNA site. During Mu transposition, these reactions are catalyzed by a tetramer of four identical transposase subunits bound to the paired Mu DNA ends. To elucidate the organization of active sites within this tetramer, the subunit providing the essential active site DDE residues for each cleavage and joining reaction was determined. We demonstrate that recombination of the two Mu DNA ends is catalyzed by two active sites, where one active site promotes both cleavage and joining of one Mu DNA end. This active site uses all three DDE residues from the subunit bound to the transposase binding site proximal to the cleavage site on the other Mu DNA end (catalysis in trans). In addition, we uncover evidence that the catalytic activity of these two active sites is coupled such that the coordinated joining of both Mu DNA ends is favored during recombination. On the basis of these results, we propose that the DNA joining stage requires a cooperative transition within the transposase-DNA complex. The cooperative utilization of active sites supplied in trans by Mu transposase provides an example of how mobile elements can ensure concomitant recombination of distant DNA sites.  (+info)

Identification of SoxS-regulated genes in Salmonella enterica serovar typhimurium. (7/284)

Salmonella enterica serovar Typhimurium responds to superoxide-generating agents through soxR-mediated activation of the soxS gene, whose product, SoxS, is necessary for resistance to oxidative stress. The S. enterica serovar Typhimurium soxRS system also mediates redox-inducible resistance to diverse antibiotics, which may be relevant to clinical infections. In order to identify SoxS-regulated genes in S. enterica serovar Typhimurium, a lacI-regulated expression system for the S. enterica serovar Typhimurium soxS gene was developed. This system was used to demonstrate that soxS expression is sufficient for the induction of resistance to the superoxide-generating drug paraquat and for the transcriptional activation of the sodA and micF genes. In addition, a library of random lacZ insertions was generated and screened for clones displaying differential beta-galactosidase activity in the presence or absence of SoxS. This selection yielded six independent chromosomal lacZ transcriptional fusions that were activated by either artificial expression of SoxS or exposure of wild-type cells to micromolar concentrations of paraquat. Moreover, disruption of the inducible genes by the insertions rendered S. enterica serovar Typhimurium hypersensitive to millimolar concentrations of paraquat. Nucleotide sequence determination identified the disrupted genes as sodA (Mn-containing superoxide dismutase), fpr (NADPH:ferredoxin oxidoreductase), and ydbK (a putative Fe-S-containing reductase).  (+info)

Mu DNA reintegration upon excision: evidence for a possible involvement of nucleoid folding. (8/284)

Mutations induced by the integration of a Mugem2ts prophage can revert at frequencies around 1x10(-6). In these revertant clones, the prophage excised from its original localization is not lost but reintegrated elsewhere in the host genome. One of the most intriguing aspects of this process is that the prophage reintegration is not randomly distributed: there is a strong correlation between the original site of insertion (the donor site) and the target site of the phage DNA migration (the receptor site). In this paper, it is shown that in the excision-reintegration process mediated by Mugem2ts, the position of the initial prophage site strongly influences the location of the reintegration site. In addition, for each donor site, the receptor site is a discrete DNA region within which the excised Mu DNA can reintegrate and the two sites implicated in phage DNA migration must be located on the same DNA molecule. These data suggest the involvement of nucleoid folding in the excision-reintegration process.  (+info)