(1/515) Long-term regulation of aquaporins in the kidney.

The discovery of the aquaporin family of water channels has greatly improved our understanding of how water crosses epithelial cells, particularly in the kidney. The study of the mechanisms involved in the regulation of collecting duct water permeability, in particular, has advanced very rapidly since the identification and characterization of aquaporin-2 (AQP2) in 1993. One of the more surprising findings has been the dramatic long-term changes that are seen in the abundance of this protein, as well as the recognition that these changes represent a way of modulating the acute antidiuretic effects of vasopressin. Furthermore, such changes seem to be of etiological and pathological significance in a number of clinical disorders of water balance. This review focuses on the various conditions in which AQP2 expression is altered (either increased or decreased) and on what this can tell us about the signals and mechanisms controlling these changes. Ultimately, this may be of great value in the clinical management of water balance disorders. Evidence is also now beginning to emerge that there are similar changes in the expression of other renal aquaporins, which had previously been thought to provide an essentially constitutive water permeability pathway, suggesting that they too should be considered as regulatory factors in the control of body water balance.  (+info)

(2/515) Vasopressin regulates apical targeting of aquaporin-2 but not of UT1 urea transporter in renal collecting duct.

In the renal inner medullary collecting duct (IMCD), vasopressin regulates two key transporters, namely aquaporin-2 (AQP2) and the vasopressin-regulated urea transporter (VRUT). Both are present in intracellular vesicles as well as the apical plasma membrane. Short-term regulation of AQP2 has been demonstrated to occur by vasopressin-induced trafficking of AQP2-containing vesicles to the apical plasma membrane. Here, we have carried out studies to determine whether short-term regulation of VRUT occurs by a similar process. Cell surface labeling with NHS-LC-biotin in rat IMCD suspensions revealed that vasopressin causes a dose-dependent increase in the amount of AQP2 labeled at the cell surface, whereas VRUT labeled at the cell surface did not increase in response to vasopressin. Immunoperoxidase labeling of inner medullary thin sections from Brattleboro rats treated with 1-desamino-8-D-arginine vasopressin (DDAVP) for 20 min revealed dramatic translocation of AQP2 to the apical region of the cell, with no change in the cellular distribution of VRUT. In addition, differential centrifugation of inner medullary homogenates from Brattleboro rats treated with DDAVP for 60 min revealed a marked depletion of AQP2 from the low-density membrane fraction (enriched in intracellular vesicles) but did not alter the quantity of VRUT in this fraction. Finally, AQP2-containing vesicles immunoisolated from a low-density membrane fraction from renal inner medulla did not contain immunoreactive VRUT. Thus vasopressin-mediated regulation of AQP2, but not of VRUT, depends on regulated vesicular trafficking to the plasma membrane.  (+info)

(3/515) An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus.

Autosomal recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin, are caused by mutations in the aquaporin-2 (AQP2) gene. Missense AQP2 proteins in recessive NDI have been shown to be retarded in the endoplasmic reticulum, whereas AQP2-E258K, an AQP2 mutant in dominant NDI, was retained in the Golgi complex. In this study, we identified the molecular mechanisms underlying recessive and dominant NDI. Sucrose gradient centrifugation of rat and human kidney proteins and subsequent immunoblotting revealed that AQP2 forms homotetramers. When expressed in oocytes, wild-type AQP2 and AQP2-E258K also formed homotetramers, whereas AQP2-R187C, a mutant in recessive NDI, was expressed as a monomer. Upon co-injection, AQP2-E258K, but not AQP2-R187C, was able to heterotetramerize with wild-type AQP2. Since an AQP monomer is the functional unit and AQP2-E258K is a functional but misrouted water channel, heterotetramerization of AQP2-E258K with wild-type AQP2 and inhibition of further routing of this complex to the plasma membrane is the cause of dominant NDI. This case of NDI is the first example of a dominant disease in which the 'loss-of-function' phenotype is caused by an impaired routing rather than impaired function of the wild-type protein.  (+info)

(4/515) Aquaporin-6: An intracellular vesicle water channel protein in renal epithelia.

All characterized mammalian aquaporins (AQPs) are localized to plasma membranes where they function chiefly to mediate water transport across cells. Here we show that AQP6 is localized exclusively in intracellular membranes in renal epithelia. By using a polyclonal antibody to the C terminus of AQP6, immunoblots revealed a major 30-kDa band in membranes from rat renal cortex and medulla. Endoglycosidase treatment demonstrated presence of an intracellular high mannose glycan on each subunit. Sequential ultracentrifugation of rat kidney homogenates confirmed that AQP6 resides predominantly in vesicular fractions, and immunohistochemical and immunoelectron microscopic studies confirmed that >98% of AQP6 is located in intracellular membrane vesicles. In glomeruli, AQP6 is present in membrane vesicles within podocyte cell bodies and foot processes. In proximal tubules, AQP6 is also abundant in membrane vesicles within the subapical compartment of segment 2 and segment 3 cells, but was not detected in the brush border or basolateral membranes. In collecting duct, AQP6 resides in intracellular membrane vesicles in apical, mid, and basolateral cytoplasm of type A intercalated cells, but was not observed in the plasma membrane. Unlike other members of the AQP family, the unique distribution in intracellular membrane vesicles in multiple types of renal epithelia indicates that AQP6 is not simply involved in transcellular fluid absorption. Moreover, our studies predict that AQP6 participates in distinct physiological functions such as glomerular filtration, tubular endocytosis, and acid-base metabolism.  (+info)

(5/515) The Cre/loxP system and gene targeting in the kidney.

The Cre/loxP and Flp/FRT systems mediate site-specific DNA recombination and are being increasingly utilized to study gene function in vivo. These systems allow targeted gene disruption in a single cell type in vivo, thereby permitting study of the physiological and pathophysiological impact of a given gene product derived from a particular cell type. In the kidney, the Cre/loxP system has been employed to achieve gene deletion selectively within principal cells of the collecting duct. Disruption of target genes in the collecting duct, such as endothelin-1 or polycystic kidney disease-1 (PKD1), could lead to important insights into the biological roles of these gene products. With selection of the appropriate renal cell-specific promoters, these recombination systems could be used to target gene disruption to virtually any renal cell type. Although transgenic studies utilizing these recombination systems are promising, they are in their relative infancy and can be time consuming and expensive and yield unanticipated results. It is anticipated that continued experience with these systems will produce an important tool for analyzing gene function in renal health and disease.  (+info)

(6/515) Urinary excretion of aquaporin-2 in rat is mediated by a vasopressin-dependent apical pathway.

Clinical studies have shown that aquaporin-2 (AQP2), the vasopressin-regulated water channel, is excreted in the urine, and that the excretion increases in response to vasopressin. However, the cellular mechanisms involved in AQP2 excretion are unknown, and it is unknown whether the excretion correlates with AQP2 levels in kidney or levels in the apical plasma membrane. The present study was undertaken to clarify these issues. Immunoblotting of rat urine samples revealed significant excretion of AQP2, whereas AQP3, being a basolateral aquaporin in the same cells, was undetectable. Thus, there was a nonproportional excretion of AQP2 and AQP3 (compared with kidney levels), indicating that AQP2 is excreted predominantly via a selective apical pathway and not by whole cell shedding. Urinary AQP2 was associated with small vesicles, membrane fragments, and multivesicular bodies as determined by immunoelectron microscopy and negative staining techniques. In rats with normal water supply, daily urinary excretion of AQP2 was 3.9+/-0.9% (n = 6) of total kidney expression. Treatment with desmopressin acetate subcutaneously caused a fourfold increase in urinary excretion of AQP2 during 8 h. Forty-eight hours of thirsting, known to increase endogenous vasopressin secretion, resulted in a three-fold increase in kidney AQP2 levels but urinary excretion increased ninefold to 15+/-3% (n = 6) of AQP2 in kidney of thirsted rats. Moreover, rats that were thirsted for 48 h and subsequently allowed free access to water for 24 h produced a decrease in urinary AQP2 excretion to 38+/-15% (n = 6) of that during thirsting. In Brattleboro rats or lithium-treated normal rats completely lacking vasopressin action, and hence having extremely low levels of AQP2 in the apical plasma membrane, AQP2 was undetectable in urine. Thus, conditions with known altered vasopressin levels and altered levels of AQP2 in the apical plasma membrane were associated with corresponding major changes in AQP2 urine excretion. In contrast, in such conditions, kidney AQP2 levels and urinary AQP2 excretion did not show a proportional relationship.  (+info)

(7/515) Effects of missense mutations on rat aquaporin-2 in LLC-PK1 porcine kidney cells.

BACKGROUND: Mutations in the aquaporin-2 (AQP2) gene have been found in families with nephrogenic diabetes insipidus (NDI), but the pathophysiological mechanisms of how mutant AQP2 causes the disease are still not clear. METHODS: Wild-type (WT) AQP2 and four mutants-T126M, A147T, R187C, and S216P-were transiently expressed in LLC-PK1 cells. The osmotic water permeability of LLC-PK1 cells expressing AQP2 mutants was determined by stopped-flow light-scattering microphotometry. Cell surface expression, subcellular localization, and effects of vasopressin stimulation were examined by surface biotin labeling and confocal immunohistochemistry. RESULTS: The osmotic water permeability (Pf) of cells expressing WT increased significantly after vasopressin treatment, whereas the Pf of cells expressing T126M A147T, R187C, and S216P was not significantly different from that of the control even after vasopressin stimulation. Confocal immunohistochemistry demonstrated distribution of WT and A147T in early/recycling endosomal compartments and vasopressin-responsive translocation and surface expression. In contrast, stainings of T126M, R187C, and S216P were similar to that of Grp78, indicating that these mutants were misassembled and retarded in the endoplasmic reticulum. CONCLUSION: Our results indicated that the intracellular distribution and vasopressin-regulated trafficking of A147T is intact, in contrast to the other three mutants, of which both were impaired. Thus, it is conceivable that the disruption of the AQP2 channel function accounts for the pathogenesis of A147T NDI, whereas trafficking defects account for that of the other types, suggesting that the pathophysiology of AQP2-related NDI is heterogeneous.  (+info)

(8/515) Lack of vasopressin-independent upregulation of AQP-2 gene expression in homozygous Brattleboro rats.

Arginine vasopressin (AVP) plays an important role in the expression of aquaporin (AQP-2) in the collecting duct. The present study was undertaken to determine whether there is an AVP-independent regulation of AQP-2 gene expression in homozygous Brattleboro rats in which endogenous AVP is absent. Exogenous administration of 1-deamino-8-D-AVP produced an antidiuresis and expressed AQP-2 mRNA and AQP-2 protein in the renal medulla of the homozygous Brattleboro rats. Twelve hours of water deprivation produced severe dehydration in the homozygous Brattleboro rats, such that urinary osmolality increased from 200 to 649 mosmol/kgH(2)O. However, no increase in AQP-2 mRNA expression was observed after this dehydration, and the medullary tissue content and urinary excretion of AQP-2 also remained unchanged. Increases in AQP-2 mRNA expression and AQP-2 protein were evident in Long-Evans rats after 64 h of water deprivation, with a severity of dehydration almost equal to the 12-h dehydrated, homozygous Brattleboro rats. These results indicate the lack of an AVP-independent mechanism for upregulating AQP-2 mRNA expression in renal collecting duct cells.  (+info)