Extinction of responding maintained by timeout from avoidance. (1/658)

The resistance to extinction of lever pressing maintained by timeout from avoidance was examined. Rats were trained under a concurrent schedule in which responses on one lever postponed shock on a free-operant avoidance (Sidman) schedule (response-shock interval = 30 s) and responses on another lever produced 2 min of signaled timeout from avoidance on a variable-ratio 15 schedule. Following extended training (106 to 363 2-hr sessions), two experiments were conducted. In Experiment 1 two different methods of extinction were compared. In one session, all shocks were omitted, and there was some weakening of avoidance but little change in timeout responding. In another session, responding on the timeout lever was ineffective, and under these conditions timeout responding showed rapid extinction. The within-session patterns produced by extinction manipulations were different than the effects of drugs such as morphine, which also reduces timeout responding. In Experiment 2 shock was omitted for many consecutive sessions. Response rates on the avoidance lever declined relatively rapidly, with noticeable reductions within 5 to 10 sessions. Extinction of the timeout lever response was much slower than extinction of avoidance in all 4 rats, and 2 rats continued responding at baseline levels for more than 20 extinction sessions. These results show that lever pressing maintained by negative reinforcement can be highly resistant to extinction. The persistence of responding on the timeout lever after avoidance extinction is not readily explained by current theories.  (+info)

Blocking a selective association in pigeons. (2/658)

Experiment 1 demonstrated for the first time a stimulus-reinforcer interaction in pigeons trained with free-operant multiple schedules of reinforcement. Pigeons that treadle pressed in the presence of a tone-light (TL) compound for food exhibited primarily visual stimulus control on a stimulus-element test, whereas pigeons that avoided shock in TL exhibited auditory control. In Experiment 2, this selective association was blocked in pigeons pretrained with the biologically contingency-disadvantage element of the compound (i.e., tone-food or light-shock) before TL training. When this pretraining preceded compound-stimulus training, control was now auditory in pigeons that treadle pressed for food and was visual in pigeons that avoided shock. Previous attempts at blocking this selective association were unsuccessful in pigeons (LoLordo, Jacobs, & Foree, 1982) but were successful in rats (Schindler & Weiss, 1985). Experiment 2 established that selective associations can be blocked in pigeons when the procedures that were effective with rats were systematically replicated. These results further demonstrate the cross-species generality of an associative attentional mechanism involving a biological constraint on learning in species with different dominant sensory systems.  (+info)

Psychophysics of remembering. (3/658)

We present a new model of remembering in the context of conditional discrimination. For procedures such as delayed matching to sample, the effect of the sample stimuli at the time of remembering is represented by a pair of Thurstonian (normal) distributions of effective stimulus values. The critical assumption of the model is that, based on prior experience, each effective stimulus value is associated with a ratio of reinforcers obtained for previous correct choices of the comparison stimuli. That ratio determines the choice that is made on the basis of the matching law. The standard deviations of the distributions are assumed to increase with increasing retention-interval duration, and the distance between their means is assumed to be a function of other factors that influence overall difficulty of the discrimination. It is a behavioral model in that choice is determined by its reinforcement history. The model predicts that the biasing effects of the reinforcer differential increase with decreasing discriminability and with increasing retention-interval duration. Data from several conditions using a delayed matching-to-sample procedure with pigeons support the predictions.  (+info)

The role of the response-reinforcer relation in delay-of-reinforcement effects. (4/658)

The role of the response-reinforcer relation in maintaining operant behavior under conditions of delayed reinforcement was investigated by using a two-operandum (i.e., two-key) procedure with pigeons. Responding on one key was reinforced under a tandem variable-interval differential-reinforcement-of-other-behavior (tandem VI DRO) schedule. The schedule defined a resetting unsignaled delay-of-reinforcement procedure in that a response was required when the interfood interval of the VI schedule lapsed, but further responding during the DRO component on either key reset the time interval. This ensured a fixed delay duration between any response and reinforcement. Responding on another key, physically identical to the first one except for spatial location, otherwise was without consequence. The location of the key correlated with the delay-of-reinforcement procedure varied between sessions according to a semirandom sequence. Differences in response rates between the two keys were greater, with proportionally higher rates on the key correlated with the delay-of-reinforcement procedure, the longer the delay-of-reinforcement procedure remained correlated with the same key. Differences in responding on the two keys also increased within individual sessions. These results suggest that the response-reinforcer relation is the primary determinant of responding when responding is acquired and maintained with delayed reinforcement.  (+info)

Echolocation behaviour and prey-capture success in foraging bats: laboratory and field experiments on Myotis daubentonii. (5/658)

During prey-capture attempts, many echolocating bats emit a 'terminal buzz', when pulse repetition rate is increased and pulse duration and interpulse interval are shortened. The buzz is followed by a silent interval (the post-buzz pause). We investigated whether variation in the structure of the terminal buzz, and the calls and silent periods following it, may provide information about whether the capture attempt was successful and about the size of prey detected - detail that is valuable in studies of habitat use and energetics. We studied the trawling bat Myotis daubentonii. The time between the first call of the approach phase and the end of the terminal phase was not related to prey size in the laboratory. The last portion of the terminal buzz (buzz II) was shortened or omitted during aborted capture attempts. Both in the laboratory and in the field, the mean interpulse interval immediately after the terminal buzz (post-buzz interpulse interval) was longer in successful captures than in unsuccessful attempts. In the laboratory, the post-buzz pause was longer after successful captures than for unsuccessful attempts, and the minimum frequency of the first search-phase call emitted after the buzz (Fmin) was higher than that of the last such call prior to the buzz. These effects were not apparent in field data. Both in the laboratory (85%) and in the field (74%), significant discrimination between successful and unsuccessful capture attempts was possible when the duration of the post-buzz pause, post-buzz interpulse interval and Fmin were entered into a discriminant analysis. Thus, variation in the echolocation calls of bats during prey-capture attempts can reveal substantial information about capture success and prey size.  (+info)

Calibration of vector navigation in desert ants. (6/658)

Desert ants (Cataglyphis sp.) monitor their position relative to the nest using a form of dead reckoning [1] [2] [3] known as path integration (PI) [4]. They do this with a sun compass and an odometer to update an accumulator that records their current position [1]. Ants can use PI to return to the nest [2] [3]. Here, we report that desert ants, like honeybees [5] and hamsters [6], can also use PI to approach a previously visited food source. To navigate to a goal using only PI information, a forager must recall a previous state of the accumulator specifying the goal, and compare it with the accumulator's current state [4]. The comparison - essentially vector subtraction - gives the direction to the goal. This whole process, which we call vector navigation, was found to be calibrated at recognised sites, such as the nest and a familiar feeder, throughout the life of a forager. If a forager was trained around a one-way circuit in which the result of PI on the return route did not match the result on the outward route, calibration caused the ant's trajectories to be misdirected. We propose a model of vector navigation to suggest how calibration could produce such trajectories.  (+info)

The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impacts. (7/658)

The activities of unicellular microbes dominate the ecology of the marine environment, but the chemical signals that determine behavioral interactions are poorly known. In particular, chemical signals between microbial predators and prey contribute to food selection or avoidance and to defense, factors that probably affect trophic structure and such large-scale features as algal blooms. Using defense as an example, I consider physical constraints on the transmission of chemical information, and strategies and mechanisms that microbes might use to send chemical signals. Chemical signals in a low Re, viscosity-dominated physical environment are transferred by molecular diffusion and laminar advection, and may be perceived at nanomolar levels or lower. Events that occur on small temporal and physical scales in the "near-field" of prey are likely to play a role in cell-cell interactions. On the basis of cost-benefit optimization and the need for rapid activation, I suggest that microbial defense system strategies might be highly dynamic. These strategies include compartmented and activated reactions, utilizing both pulsed release of dissolved signals and contact-activated signals at the cell surface. Bioluminescence and extrusome discharge are two visible manifestations of rapidly activated microbial defenses that may serve as models for other chemical reactions as yet undetected due to the technical problems of measuring transient chemical gradients around single cells. As an example, I detail an algal dimethylsulfoniopropionate (DMSP) cleavage reaction that appears to deter protozoan feeding and explore it as a possible model for a rapidly activated, short-range chemical defense system. Although the exploration of chemical interactions among planktonic microbes is in its infancy, ecological models from macroorganisms provide useful hints of the complexity likely to be found.  (+info)

Olfactory foraging by Antarctic procellariiform seabirds: life at high Reynolds numbers. (8/658)

Antarctic procellariiform seabirds forage over vast stretches of open ocean in search of patchily distributed prey resources. These seabirds are unique in that most species have anatomically well-developed olfactory systems and are thought to have an excellent sense of smell. Results from controlled experiments performed at sea near South Georgia Island in the South Atlantic indicate that different species of procellariiforms are sensitive to a variety of scented compounds associated with their primary prey. These include krill-related odors (pyrazines and trimethylamine) as well as odors more closely associated with phytoplankton (dimethyl sulfide, DMS). Data collected in the context of global climatic regulation suggest that at least one of these odors (DMS) tends to be associated with predictable bathymetry, including upwelling zones and seamounts. Such odor features are not ephemeral but can be present for days or weeks. I suggest that procellariiforms foraging over vast distances may be able to recognize these features reflected in the olfactory landscape over the ocean. On the large scale, such features may aid seabirds in navigation or in locating profitable foraging grounds. Once in a profitable foraging area, procellariiforms may use olfactory cues on a small scale to assist them in locating prey patches.  (+info)