Modifications of local cerebral metabolic rates for glucose and motor behavior in rats with unilateral lesion of the subthalamic nucleus. (1/551)

Inactivation of the subthalamic nucleus (STN) has attracted interest as a therapeutic tool in Parkinson's disease. The functional consequences of the inactivation, however, are uncertain. In this study definition of the pattern of changes of cerebral functional activity associated with lesion of the STN and dopaminergic stimulation, by using the [14C]deoxyglucose method, was sought. Six or 7 days following unilateral lesion of the STN, the animals were divided into two groups: One group (n = 10) was administered apomorphine (1 mg/kg) subcutaneously; the second group (n = 10) received saline. The [14C]deoxyglucose procedure was initiated 10 minutes following the drug or saline injection. The results show that systemic administration of apomorphine to rats with unilateral lesion of the STN causes ipsiversive rotational behavior and asymmetries of glucose utilization of defined brain areas, including the substantia nigra reticulata, globus pallidus, and entopeduncular nucleus. These nuclei are the main targets of the subthalamic excitatory projections. Lesion of the nucleus per se (without challenge with apomorphine) has no significant consequences on glucose utilization. The findings indicate that the STN is involved in the activation of the basal ganglia output nuclei induced by systemic dopaminergic stimulation.  (+info)

Effects of tetrahydroprotoberberines on dopamine D2 receptors in ventral tegmental area of rat. (2/551)

AIM: To compare the actions of tetrahydroprotoberberines (THPB) on dopamine (DA) D2 receptors in the ventral tegmental area (VTA) of rat. METHODS: Extracellular single unit recording technique was used in i.v. gallamine-paralyzed rats. RESULTS: Eleven THPB analogs tested completely attenuated the apomorphine (Apo, 20 micrograms.kg-1)-induced inhibition on VTA DA cell firing activity. The OH group on C2 at THPB was linked with the reversal of Apo-induced inhibition. Their reversal potencies (ED50, microgram.kg-1) for D2 receptors were: THPB-143 (5.6) > SPD (8.5) > Iso (17.0) > THP (33) > THB (48) > THPB-18 (66) > THPB-1 (179) > THPB-19 (408) > THPB-126 (510) > THPB-104 (1019) > THPB-10 (4815). CONCLUSION: Among these 11 THPB, the 2-hydroxyl-THPB (THPB-143) showed the strongest antagonistic action on D2 receptors.  (+info)

Comparison of effects of haloperidol administration on amphetamine-stimulated dopamine release in the rat medial prefrontal cortex and dorsal striatum. (3/551)

Research has shown that there are important neurochemical differences between the mesocortical and mesostriatal dopamine systems. The work reported in this paper has sought to compare the regulation of dopamine release in the medial prefrontal cortex and the anterior caudate-putamen. In vivo microdialysis was used to recover dialysate fluid for subsequent assay for dopamine concentrations. The responses to D2 antagonist (haloperidol) administration, which has been shown to increase impulse-dependent dopamine release, were compared. Results demonstrated a diminished effect of systemic haloperidol administration on dopamine efflux in the prefrontal cortex. The responses to systemic administration of a nonimpulse-dependent, transporter-mediated, dopamine releaser (d-amphetamine) were also contrasted. Results again demonstrated a diminished pharmacological effect in the cortex. The potential interaction of stimulation of these two types of dopamine release was examined by coadministration of these compounds. Haloperidol pretreatment dramatically potentiated the dopamine-releasing effect of amphetamine administration. This effect was observed in both the cortex and the striatum. Subsequent work demonstrated that this effect of haloperidol was mediated by D2-like receptors in the prefrontal cortex. These results are discussed in relation to other neurochemical and neuroanatomical studies demonstrating sparse densities of dopamine transporter sites and dopamine D2 receptors in the cortex compared with the striatum. They demonstrate a functional correlate to the recently reported, largely extrasynaptic localization of dopamine transporter sites in the prefrontal cortex. Furthermore, they demonstrate the existence of cortical D2-like autoreceptors that may normally be "silent" under basal conditions.  (+info)

Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor activation and anesthesia. (4/551)

Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor activation and anesthesia. Studies of CNS electrophysiology have suggested an important role for oscillatory neuronal activity in sensory perception, sensorimotor integration, and movement timing. In extracellular single-unit recording studies in awake, immobilized rats, we have found that many tonically active neurons in the entopeduncular nucleus (n = 15), globus pallidus (n = 31), and substantia nigra pars reticulata (n = 31) have slow oscillations in firing rate in the seconds-to-minutes range. Basal oscillation amplitude ranged up to +/-50% of the mean firing rate. Spectral analysis was performed on spike trains to determine whether these multisecond oscillations were significantly periodic. Significant activity in power spectra (in the 2- to 60-s range of periods) from basal spike trains was found for 56% of neurons in these three nuclei. Spectral peaks corresponded to oscillations with mean periods of approximately 30 s in each nucleus. Multisecond baseline oscillations were also found in 21% of substantia nigra dopaminergic neurons. The dopamine agonist apomorphine (0.32 mg/kg iv, n = 10-15) profoundly affected multisecond oscillations, increasing oscillatory frequency (means of spectral peak periods were reduced to approximately 15 s) and increasing the regularity of the oscillations. Apomorphine effects on oscillations in firing rate were more consistent from unit to unit than were its effects on mean firing rates in the entopeduncular nucleus and substantia nigra. Apomorphine modulation of multisecond periodic oscillations was reversed by either D1 or D2 antagonists and was mimicked by the combination of selective D1 (SKF 81297) and D2 (quinpirole) agonists. Seventeen percent of neurons had additional baseline periodic activity in a faster range (0.4-2.0 s) related to ventilation. Multisecond periodicities were rarely found in neurons in anesthetized rats (n = 29), suggesting that this phenomenon is sensitive to overall reductions in central activity. The data demonstrate significant structure in basal ganglia neuron spiking activity at unexpectedly long time scales, as well as a novel effect of dopamine on firing pattern in this slow temporal domain. The modulation of multisecond periodicities in firing rate by dopaminergic agonists suggests the involvement of these patterns in behaviors and cognitive processes that are affected by dopamine. Periodic firing rate oscillations in basal ganglia output nuclei should strongly affect the firing patterns of target neurons and are likely involved in coordinating neural activity responsible for motor sequences. Modulation of slow, periodic oscillations in firing rate may be an important mechanism by which dopamine influences motor and cognitive processes in normal and dysfunctional states.  (+info)

Disruption of latent inhibition in rats with postnatal hippocampal lesions. (5/551)

Disruption of latent inhibition has been proposed as a possible model of cognitive abnormalities that underlie positive symptoms of a schizophrenia. We tested neonatal hippocampal lesioned rats in a latent inhibition paradigm. Lesions of the ventral hippocampus were induced by bilateral injections of ibotenic acid in 7 days old rats. The behavior of lesioned rats was tested postpubertally. We found a hyperresponsiveness to dopaminergic stimulation by apomorphine in locomotion tests. Latent inhibition was tested using the acquisition of a conditioned reaction in a two-way shuttle box. Sham operated control animals showed after preexposure of the to-be-conditioned stimulus (combined tone and light stimulus) a low acquisition. Ibotenic acid lesioned animals learned the conditioned reaction with and without preexposure in the same way, indicating disturbed latent inhibition. These results demonstrate disturbances in early postnatal hippocampal lesioned rats comparable with those seen in schizophrenic patients, thus further validating this procedure as a useful animal model of some aspects of schizophrenia.  (+info)

Rat strain differences in the ability to disrupt sensorimotor gating are limited to the dopaminergic system, specific to prepulse inhibition, and unrelated to changes in startle amplitude or nucleus accumbens dopamine receptor sensitivity. (6/551)

Previous studies indicate that a variety of pharmacological agents interfere with the prepulse inhibition of the acoustic startle (PPI) response including phencyclidine (PCP), 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), amphetamine, and apomorphine. Strain differences have been observed in the ability of apomorphine to disrupt PPI, although the degree to which these strain differences occur after administration of nondopaminergic drugs or the degree to which differences can be observed in other models of dopamine (DA) receptor activation has not been elucidated. The present study tested the effects of apomorphine, amphetamine, 8-OH-DPAT, and PCP on PPI in the Sprague Dawley and Wistar rat strains. Because apomorphine disrupts PPI via activation of DA receptors in the nucleus accumbens, apomorphine-induced hyperlocomotion, also a behavioral model of nucleus accumbens DA receptor activation, was measured in both rat strains. Administration of PCP or 8-OH-DPAT attenuated PPI in both strains, whereas apomorphine and amphetamine only attenuated PPI in Wistar rats. The ability of apomorphine to increase motor activity in the absence of a startle-eliciting stimulus was similar in the two strains, as was apomorphine-induced hyperlocomotion. A time course analysis of the effects of apomorphine on startle response in Sprague Dawley rats found that changes in the magnitude of PPI followed changes in basic startle amplitude. Similarly, no apomorphine-induced attenuation of PPI was observed in Sprague Dawley rats after 6-OHDA-induced DA receptor supersensitivity in the nucleus accumbens. These data suggest a dissociation between the effects of DA receptor agonists in PPI and other behavioral models of DA receptor activation.  (+info)

Effects of sustained phencyclidine exposure on sensorimotor gating of startle in rats. (7/551)

Phencyclidine (PCP), a non-competitive NMDA antagonist with actions at multiple other central nervous system receptors, can cause both acute and lasting psychoses in humans, and has also been used in cross-species models of psychosis. Acute exposure to PCP in rats produces behavioral changes, including a loss of prepulse inhibition (PPI) of the startle reflex, which parallels the loss of PPI observed in schizophrenia patients. Sustained exposure to PCP in rats produces neuropathological changes in several limbic regions and prolonged behavioral abnormalities that may parallel neuropsychological deficits in schizophrenia. It is unclear whether sustained PCP exposure will also produce a loss of prepulse inhibition which parallels the decrease observed in schizophrenia patients. In the present study, we examined changes in PPI during and after sustained PCP administration, using 5-day PCP exposure via subcutaneous osmotic minipumps, or 14-day PCP exposure via repeated intraperitoneal injections. In both forms of drug delivery, PPI was disrupted during, but not after, sustained drug exposure. PPI does not appear to be sensitive to neuropathological effects of sustained PCP exposure.  (+info)

Altered activity of midbrain dopamine neurons following 7-day withdrawal from chronic cocaine abuse is normalized by D2 receptor stimulation during the early withdrawal phase. (8/551)

Using in vivo single-unit recording in rats, we compared the effects of continuous cocaine infusion via minipump or single daily injections (both 40 mg/kg/d x 14 days, S.C.) on the activity of putative dopamine (DA) neurons in the substantia nigra pars compacta (SNC) and ventral tegmental area (VTA). On days 1-5 after cocaine withdrawal, animals were further treated with single daily injections of DA agonists. On withdrawal day 7 continuous cocaine caused a reduction in spontaneously active neurons in the SNC and reduced bursting in the VTA. In contrast, intermittent cocaine resulted in an increase in the number of active neurons in the VTA. These changes were all reversed by apomorphine or quinpirole given during the first 5 withdrawal days. The D1 antagonist SCH 39166 did not antagonize the effects of apomorphine in either region. The role of D2 receptors in modulating baseline DA activity during intermediate cocaine withdrawal is discussed.  (+info)