Effect of cysteine on the hepatic toxicity and antischistosomal activity of antimonyl potassium tartrate. (1/15)

Cysteine produced a significant and progressive reduction in the toxicity of antimonyl potassium tartrate (APT) when the two substances were injected into mice and rabbits in ratios of APT to cysteine ranging from 1:1 to 1:3. The reduction in toxicity was highest with the 1:3 ratio. However, the combination of the two substances, especially in the ratio of 1:3, appreciably reduced the antischistosomal activity of APT both in vivo and in vitro.  (+info)

Interaction of antimony tartrate with the tripeptide glutathione implication for its mode of action. (2/15)

The tripeptide glutathione (gamma-L-Glu-L-Cys-Gly, GSH) is thought to play an important role in the biological processing of antimony drugs. We have studied the complexation of the antileishmanial drug potassium antimony(III) tartrate to GSH in both aqueous solution and intact red blood cells by NMR spectroscopy and electrospray ionization mass spectrometry. The deprotonated thiol group of the cysteine residue is shown to be the only binding site for Sb(III), and a complex with the stoichiometry [Sb(GS)3] is formed. The stability constant for [Sb(GS)3] was determined to be log K 25 (I = 0.1 M, 298 K) based on a competition reaction between tartrate and GSH at different pH* values. In spite of being highly thermodynamically stable, the complex is kinetically labile. The rate of exchange of GSH between its free and Sb-bound form is pH-dependent, ranging from slow exchange on the 1H-NMR timescale at low pH (2 s-1 at pH 3.2) to relatively rapid exchange at biological pH (> 440 s-1). Such facile exchange may be important in the transport of Sb(III) in various biofluids and tissues in vivo. Our spin-echo 1H-NMR data show that Sb(III) rapidly entered red blood cell walls and was complexed by intracellular glutathione.  (+info)

Arsenic induces expression of the multidrug resistance-associated protein 2 (MRP2) gene in primary rat and human hepatocytes. (3/15)

Metals, such as arsenic or cadmium, have recently been demonstrated to interact with metabolic pathways, including phase I and phase II enzymes and the phase III efflux pump P-glycoprotein. In the present study, we investigated the effects of heavy metals and metalloids on the expression of the multidrug resistance-associated protein 2 (MRP2), a major hepatic transporter. Treatment of primary rat hepatocytes by sodium arsenite [As(III)], sodium arsenate and potassium antimony tartrate, but not cadmium chloride, was shown to markedly increase MRP2 mRNA and protein levels; As(III)-mediated induction was dose- and time-dependent and paralleled a strong increase in MRP2 amounts as assessed by Western blotting. As(III) was also demonstrated to markedly up-regulate MRP2 gene expression in primary human hepatocytes. MRP2 mRNA induction occurring in As(III)-treated rat hepatocytes was fully blocked by actinomycin D, indicating that it required active gene transcription. It was associated with an activation of the c-Jun N-terminal kinase pathway and with a reduction of cellular glutathione levels. Quercetin, a flavonoid compound known to block As(III)-related induction of P-glycoprotein, was also found to prevent up-regulation of MRP2 gene expression in rat hepatocytes exposed to As(III). Such an effect was unlikely to be due to alteration of JNK pathway since quercetin failed to abolish As(III)-induced JNK phosphorylation. It may rather be linked to the increase of cellular glutathione levels by quercetin, thus limiting the depleting effects of As(III) on glutathione amounts. Finally, these results confirm that some metals strongly regulate expression of detoxifying proteins, including biliary drug transporters.  (+info)

Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines. (4/15)

Using in vitro protein tyrosine phosphatase (PTPase) assays, we found that sodium stibogluconate, a drug used in treatment of leishmaniasis, is a potent inhibitor of PTPases Src homology PTPase1 (SHP-1), SHP-2, and PTP1B but not the dual-specificity phosphatase mitogen-activated protein kinase phosphatase 1. Sodium stibogluconate inhibited 99% of SHP-1 activity at 10 micrograms/ml, a therapeutic concentration of the drug for leishmaniasis. Similar degrees of inhibition of SHP-2 and PTP1B required 100 micrograms/ml sodium stibogluconate, demonstrating differential sensitivities of PTPases to the inhibitor. The drug appeared to target the SHP-1 domain because it showed similar in vitro inhibition of SHP-1 and a mutant protein containing the SHP-1 PTPase domain alone. Moreover, it forms a stable complex with the PTPase: in vitro inhibition of SHP-1 by the drug was not removed by a washing process effective in relieving the inhibition of SHP-1 by the reversible inhibitor suramin. The inhibition of cellular PTPases by the drug was suggested by its rapid induction of tyrosine phosphorylation of cellular proteins in Baf3 cells and its augmentation of IL-3-induced Janus family kinase 2/Stat5 tyrosine phosphorylation and proliferation of Baf3 cells. The augmentation of the opposite effects of GM-CSF and IFN-alpha on TF-1 cell growth by the drug indicated its broad activities in the signaling of various cytokines. These data represent the first evidence that sodium stibogluconate inhibits PTPases and augments cytokine responses. Our results provide novel insights into the pharmacological effects of the drug and suggest potential new therapeutic applications.  (+info)

Antimonial-induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. (5/15)

The capability of the obligate intracellular parasites like Leishmania donovani to survive within the host cell parasitophorous vacuoles as nonmotile amastigotes determines disease pathogenesis, but the mechanism of elimination of the parasites from these vacuoles are not well understood. By using the anti-leishmanial drug potassium antimony tartrate, we demonstrate that, upon drug exposure, intracellular L. donovani amastigotes undergo apoptotic death characterized by nuclear DNA fragmentation and externalization of phosphatidylserine. Changes upstream of DNA fragmentation included generation of reactive oxygen species like superoxide, nitric oxide, and hydrogen peroxide that were primarily concentrated in the parasitophorous vacuoles. In the presence of antioxidants like N-acetylcysteine or Mn(III) tetrakis(4-benzoic acid)porphyrin chloride, an inhibitor of inducible nitric-oxide synthase, a diminution of reactive oxygen species generation and improvement of amastigote survival were observed, suggesting a close link between drug-induced oxidative stress and amastigote death. Changes downstream to reactive oxygen species increase involved elevation of intracellular Ca2+ concentrations in both the parasite and the host that was preventable by antioxidants. Flufenamic acid, a non-selective cation channel blocker, decreased the elevation of Ca2+ in both the cell types and reduced amastigote death, thus establishing a central role of Ca2+ in intracellular parasite clearance. This influx of Ca2+ was preceded by a fall in the amastigote mitochondrial membrane potential. Therefore, this study projects the importance of flufenamic acid-sensitive non-selective cation channels as important modulators of antimonial efficacy and lends credence to the suggestion that, within the host cell, apoptosis is the preferred mode of death for the parasites.  (+info)

Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. (6/15)

The arsenate, arsenite, and antimonite resistance region of the Staphylococcus xylosus plasmid pSX267 was subcloned in Staphylococcus carnosus. The sequenced DNA region revealed three consecutive open reading frames, named arsR, arsB, and arsC. Expression studies in Escherichia coli with the bacteriophage T7 RNA polymerase-promoter system yielded three polypeptides with apparent molecular weights of 8,000, 35,000, and 15,000, which very likely correspond to ArsR, ArsB, and ArsC, respectively. ArsB was distinguished by its overall hydrophobic character, suggesting a membrane association. The arsenate, arsenite, and antimonite resistance was shown to be inducible by all three heavy metal ions. Inactivation of the first gene, arsR, resulted in constitutive expression of resistance. Similar results were obtained with transcriptional fusions of various portions of the ars genes with a lipase reporter gene, indicating a function of ArsR as a negative regulator of a putative promoter in front of arsR. The inactivation of arsR also resulted in reduction of resistance to arsenite and antimonite, while arsenate resistance was unaffected. The three ars genes conferred arsenite resistance in E. coli and arsenite as well as arsenate resistance in Bacillus subtilis.  (+info)

The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite leishmania. (7/15)

Antimony-containing drugs are still the drugs of choice in the treatment of infections caused by the parasite Leishmania. Resistance to antimony is now common in some parts of the world, and several mechanisms of resistance have been described. By transfecting cosmid banks and selecting with potassium antimonyl tartrate (SbIII), we have isolated a cosmid associated with resistance. This cosmid contains 2 copies of the heat shock protein 70 (HSP70) and 1 copy of the heat shock cognate protein 70 (HSC70). Several data linked HSP70 to antimony response and resistance. First, several Leishmania species, both as promastigotes and amastigotes, increased the expression of their HSP70 proteins when grown in the presence of 1 or 2 times the Effect Concentration 50% of SbIII. In several mutants selected for resistance to either SbIII or to the related metal arsenite, the HSP70 proteins were found to be overexpressed. This increase was also observed in revertant cells grown for several passages in the absence of SbIII, suggesting that this increased production of HSP70 is stable. Transfection of HSP70 or HSC70 in Leishmania cells does not confer resistance directly, though these transfectants were better able to tolerate a shock with SbIII. Our results are consistent with HSP70 and HSC70 being a first line of defense against SbIII until more specific and efficient resistance mechanisms take over.  (+info)

Lower nitric oxide susceptibility of trivalent antimony-resistant amastigotes of Leishmania infantum. (8/15)

We previously documented the induction of Leishmania amastigote apoptosis by trivalent antimony (SbIII) and nitric oxide (NO). We demonstrate here that SbIII-resistant amastigotes were resistant to NO toxicity when delivered extracellularly by NO donors or intracellularly via macrophage activation. Shared biochemical targets for SbIII and NO resistance in Leishmania are discussed.  (+info)