Effects of egg size on the development time of non-feeding larvae. (1/4)

The evolution of egg size in marine invertebrates remains a topic of central importance for life-history biologists, and the pioneering work of Vance has strongly influenced our current views. Vance's model and most models developed since have assumed that increases in egg size result in an increase in the prefeeding period of marine invertebrate larvae. For lecithotrophic species, this means that the entire development period should be correlated with egg size. Despite the importance of this assumption, it has not been tested at the appropriate scale-within species. We investigated the effects of egg size on development time for three lecithotrophic species from two phyla: the ascidians Phallusia obesa and Ciona intestinalis, and the echinoid Heliocidaris erythrogramma. We found that within individual broods of eggs, larger eggs took longer than smaller eggs to develop or become metamorphically competent larvae. It has long been recognized that producing larger eggs decreases fecundity, but our results show that increasing egg size also carries the extra cost of an extended planktonic period during which mortality can occur. The substantial variation in egg sizes observed within broods may represent a bet-hedging strategy by which offspring with variable dispersal potentials are produced.  (+info)

Embryo fossilization is a biological process mediated by microbial biofilms. (2/4)

 (+info)

Linking sperm length and velocity: the importance of intramale variation. (3/4)

 (+info)

Effect of diets supplemented with different sources of astaxanthin on the gonad of the sea urchin Anthocidaris crassispina. (4/4)

The effect of the microalgae Haematococcus pluvialis and Chorella zofingiensis, and synthetic astaxanthin on the gonad of the sea urchin Anthocidaris crassispina was studied. The basal diet was supplemented with H. pluvialis, C. zofingiensis, or synthetic astaxanthin, at two levels of astaxanthin (approximately 400 mg/kg and 100 mg/kg), to obtain the experimental diets HP1, HP2, CZ1, CZ2, AST1, and AST2, respectively, for two months of feeding experiment. The results showed that the concentrations of astaxanthin in the gonads of the sea urchins fed these experimental diets ranged from 0.15 to 3.01 mg/kg dry gonad weight. The higher astaxanthin levels (>2.90 mg/kg) were found in the gonads of the sea urchins fed the diets HP1 (containing 380 mg/kg of astaxanthins, mostly mono- and diesters) and AST1 (containing 385 mg/kg of synthetic astaxanthin). The lowest astaxanthin level (0.15 mg/kg) was detected in the gonads of the sea urchins fed the diet CZ2 (containing 98 mg/kg of astaxanthins, mostly diesters). Furthermore, the highest canthaxanthin level (7.48 mg/kg) was found in the gonads of the sea urchins fed the diet CZ1 (containing 387 mg/kg of astaxanthins and 142 mg/kg of canthaxanthin), suggesting that astaxanthins, especially astaxanthin esters, might not be assimilated as easily as canthaxanthin by the sea urchins. Our results show that sea urchins fed diets containing astaxanthin pigments show higher incorporation of these known antioxidant constituents, with the resultant seafood products therefore being of potential higher nutritive value.  (+info)