Loading...
(1/160) Role of antioxidant defenses against ethanol-induced damage in cultured rat gastric epithelial cells.

Reactive oxygen species appears to be involved in the pathogenesis of ethanol-induced gastric mucosal injury in vivo. Because ingested ethanol diffuses into the gastric mucosa, targeting both epithelium and endothelium, in the present study we examined the possible protective effect of antioxidants on ethanol damage in gastric epithelial cells and endothelial cells in vitro. Cytotoxicity by ethanol was quantified by measuring 51Cr release. The effects of impairment of the glutathione redox cycle and of inhibition of cellular catalase were examined. The generation of superoxide was assessed by the reduction in cytochrome c. Ethanol caused a time- and dose-dependent increase in 51Cr release from epithelial cells. Incubation of cells with DL-buthionine-(S,R)-sulfoximine, while reducing glutathione production, dose dependently enhanced ethanol-induced injury. 1,3-Bis(chloroethyl)-nitrosourea, while inhibiting glutathione reductase activity, also sensitized cells to ethanol. In contrast, the inhibition of catalase with 3-amino-1,2, 4-triazole did not alter the susceptibility of epithelial cells to ethanol. Ethanol induced damage to endothelial cells in a similar fashion. In endothelial cells, however, neither impairment of the glutathione cycle nor inhibition of catalase influenced ethanol-induced damage. Epithelial cells, when exposed to ethanol, increased superoxide production as a function of ethanol concentration, whereas endothelial cells did not. The glutathione redox cycle, but not cellular catalase, plays a critical role in protecting epithelial cells against ethanol damage, whereas neither antioxidant seems to play a role in protection of endothelial cells. The distinct difference in antioxidant protection against ethanol appears to depend on the capability of each cell to produce cytotoxic oxygen species in response to ethanol exposure.  (+info)

(2/160) Reactive oxygen species participate in mdr1b mRNA and P-glycoprotein overexpression in primary rat hepatocyte cultures.

P-glycoproteins encoded by multidrug resistance type 1 (mdr1) genes mediate ATP-dependent efflux of numerous lipophilic xenobiotics, including several anticancer drugs, from cells. Overexpression of mdr1-type transporters in tumour cells contributes to a multidrug resistance phenotype. Several factors shown to induce mdr1 overexpression (UV irradiation, epidermal growth factor, tumour necrosis factor alpha, doxorubicin) have been associated with the generation of reactive oxygen species (ROS). In the present study, primary rat hepatocyte cultures that exhibit time-dependent overexpression of the mdr1b gene were used as a model system to investigate whether ROS might participate in the regulation of intrinsic mdr1b overexpression. Addition of H2O2 to the culture medium resulted in a significant increase in mdrlb mRNA and P-glycoprotein after 3 days of culture, with maximal (approximately 2-fold) induction being observed with 0.5-1 mM H2O2. Furthermore, H2O2 led to activation of poly(ADP-ribose) polymerase, a nuclear enzyme activated by DNA strand breaks, indicating that ROS reached the nuclear compartment. Thus, extracellularly applied H2O2 elicited intracellular effects. Treatment of rat hepatocytes with the catalase inhibitor 3-amino-1,2,4-triazole (2-4 mM for 72 h or 10 mM for 1 h following the hepatocyte attachment period) also led to an up-regulation of mdrlb mRNA and P-glycoprotein expression. Conversely, antioxidants (1 mM ascorbate, 10 mM mannitol, 2% dimethyl sulphoxide, 10 mM N-acetylcysteine) markedly suppressed intrinsic mdr1b mRNA and P-glycoprotein overexpression. Intracellular steady-state levels of the mdrl substrate rhodamine 123, determined as parameter of mdr1-type transport activity, indicated that mdr1-dependent efflux was increased in hepatocytes pretreated with H2O2 or aminotriazole and decreased in antioxidant-treated cells. The induction of mdr1b mRNA and of functionally active mdr1-type P-glycoproteins by elevation in intracellular ROS levels and the repression of intrinsic mdrlb mRNA and P-glycoprotein overexpression by antioxidant compounds support the conclusion that the expression of the mdr1b P-glycoprotein is regulated in a redox-sensitive manner.  (+info)

(3/160) Susceptibility to hydrogen peroxide and catalase activity of root nodule bacteria.

The root nodule bacteria (free-living cells) tested had higher susceptibility to hydrogen peroxide (H2O2) than the other genera of aerobic or facultative anaerobic bacteria tested. The catalase activities tended to have a positive correlation with H2O2 resistance among all bacteria tested. Addition of a catalase inhibitor such as 3-amino-1, 2, 4-triazole increased the susceptibility to H2O2. These results suggest that the lower catalase activity brings about the higher susceptibility of root nodule bacteria to H2O2. Root nodule bacteria seemed to have two or three catalase isozymes during growth and their catalase activities were higher in log phase than in stationary phase, contrary to other genera of bacteria tested.  (+info)

(4/160) A TATA-binding protein mutant defective for TFIID complex formation in vivo.

Using an intragenic complementation screen, we have identified a temperature-sensitive TATA-binding protein (TBP) mutant (K151L, K156Y) that is defective for interaction with certain yeast TBP-associated factors (TAFs) at the restrictive temperature. The K151L,K156Y mutant appears to be functional for RNA polymerase I (Pol I) and Pol III transcription, and it is capable of supporting Gal4-activated and Gcn4-activated transcription by Pol II. However, transcription from certain TATA-containing and TATA-less Pol II promoters is reduced at the restrictive temperature. Immunoprecipitation analysis of extracts prepared after culturing cells at the restrictive temperature for 1 h indicates that the K151L,K156Y derivative is severely compromised in its ability to interact with TAF130, TAF90, TAF68/61, and TAF25 while remaining functional for interaction with TAF60 and TAF30. Thus, a TBP mutant that is compromised in its ability to form TFIID can support the response to Gcn4 but is defective for transcription from specific promoters in vivo.  (+info)

(5/160) Generation of reactive oxygen species by human mesothelioma cells.

Malignant mesothelioma cells contain elevated levels of manganese superoxide dismutase (MnSOD) and are highly resistant to oxidants compared to non-malignant mesothelial cells. Since the level of cellular free radicals may be important for cell survival, we hypothesized that the increase of MnSOD in the mitochondria of mesothelioma cells may alter the free radical levels of these organelles. First, MnSOD activity was compared to the activities of two constitutive mitochondrial enzymes; MnSOD activity was 20 times higher in the mesothelioma cells than in the mesothelial cells, whereas the activities of citrate synthase and cytochrome c oxidase did not differ significantly in the two cell lines. This indicates that the activity of MnSOD per mitochondrion was increased in the mesothelioma cells. Superoxide production was assayed in the isolated mitochondria of these cells using lucigenin chemiluminescence. Mitochondrial superoxide levels were significantly lower (72%) in the mesothelioma cells compared to the mesothelial cells. Oxidant production in intact cells, assayed by fluorimetry using 2',7'-dichlorodihydrofluorescein as a fluorescent probe, did not differ significantly between these cells. We conclude that mitochondrial superoxide levels are lower in mesothelioma cells compared to nonmalignant mesothelial cells, and that this difference may be explained by higher MnSOD activity in the mitochondria of these cells. Oxidant production was not different in these cells, which may be due to the previously observed increase in H2O2-scavenging mechanisms of mesothelioma cells.  (+info)

(6/160) Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway.

Low concentrations of As(2)O(3) (+info)

(7/160) Role of megalin (gp330) in transcytosis of thyroglobulin by thyroid cells. A novel function in the control of thyroid hormone release.

When thyroglobulin (Tg) is endocytosed by thyrocytes and transported to lysosomes, thyroid hormones (T4 and T3) are released. However, some internalized Tg is transcytosed intact into the bloodstream, thereby avoiding proteolytic cleavage. Here we show that megalin (gp330), a Tg receptor on thyroid cells, plays a role in Tg transcytosis. Following incubation with exogenous rat Tg at 37 degrees C, Fisher rat thyroid (FRTL-5) cells, a differentiated thyroid cell line, released T3 into the medium. However, when cells were incubated with Tg plus either of two megalin competitors, T3 release was increased, suggesting that Tg internalized by megalin bypassed the lysosomal pathway, possibly with release of undegraded Tg from cells. To assess this possibility, we performed experiments in which FRTL-5 cells were incubated with either unlabeled or (125)I-labeled Tg at 37 degrees C to allow internalization, treated with heparin to remove cell surface-bound Tg, and further incubated at 37 degrees C to allow Tg release. Intact 330-kDa Tg was released into the medium, and the amount released was markedly reduced by megalin competitors. To investigate whether Tg release resulted from transcytosis, we studied FRTL-5 cells cultured as polarized layers with tight junctions on permeable filters in the upper chamber of dual chambered devices. Following the addition of Tg to the upper chamber and incubation at 37 degrees C, intact 330-kDa Tg was found in fluids collected from the lower chamber. The amount recovered was markedly reduced by megalin competitors, indicating that megalin mediates Tg transcytosis. We also studied Tg transcytosis in vivo, using a rat model of goiter induced by aminotriazole, in which increased release of thyrotropin induces massive colloid endocytosis. This was associated with increased megalin expression on thyrocytes and increased serum Tg levels, with reduced serum T3 levels, supporting the conclusion that megalin mediates Tg transcytosis. Tg transcytosis is a novel function of megalin, which usually transports ligands to lysosomes. Megalin-mediated transcytosis may regulate the extent of thyroid hormone release.  (+info)

(8/160) Salicylic acid mediated by the oxidative burst is a key molecule in local and systemic responses of cotton challenged by an avirulent race of Xanthomonas campestris pv malvacearum.

We analyzed the production of reactive oxygen species, the accumulation of salicylic acid (SA), and peroxidase activity during the incompatible interaction between cotyledons of the cotton (Gossypium hirsutum) cv Reba B50/Xanthomonas campestris pv malvacearum (Xcm) race 18. SA was detected in petioles of cotyledons 6 h after infection and 24 h post inoculation in cotyledons and untreated leaves. The first peak of SA occurred 3 h after generation of superoxide (O(2)(.-)), and was inhibited by infiltration of catalase. Peroxidase activity and accumulation of SA increased in petioles of cotyledons and leaves following H(2)O(2) infiltration of cotyledons from 0.85 to 1 mM. Infiltration of 2 mM SA increased peroxidase activity in treated cotyledons and in the first leaves, but most of the infiltrated SA was rapidly conjugated within the cotyledons. When increasing concentrations of SA were infiltrated 2. 5 h post inoculation at the beginning of the oxidative burst, the activity of the apoplastic cationic O(2)(.-)-generating peroxidase decreased in a dose-dependent manner. We have shown that during the cotton hypersensitive response to Xcm, H(2)O(2) is required for local and systemic accumulation of SA, which may locally control the generation of O(2)(.-). Detaching cotyledons at intervals after inoculation demonstrated that the signal leading to systemic accumulation of SA was emitted around 3 h post inoculation, and was associated with the oxidative burst. SA produced 6 h post infection at HR sites was not the primary mobile signal diffusing systemically from infected cotyledons.  (+info)