Dietary copper, manganese and iron affect the formation of aberrant crypts in colon of rats administered 3,2'-dimethyl-4-aminobiphenyl. (1/127)

Aberrant crypt foci (ACF) are preneoplastic lesions for colon cancer. Altered amounts of copper-zinc (CuZnSOD) and manganese (MnSOD) superoxide dismutases have been implicated in multistage carcinogesis of both rodents and humans. Dietary factors are potential modulators of both CuZnSOD and MnSOD activity. The purpose of this study was to investigate the interactive effects of dietary copper, manganese, and iron on 3,2'-dimethyl-4-aminobiphenyl (DMABP)-induced ACF and superoxide dismutase activities in weanling rats fed low or adequate copper (0.8 or 5.1 microg Cu/g diet), low or adequate manganese (0.6 or 17 microg Mn/g diet), and adequate or high iron (37 or 140 microg Fe/g diet). Twelve rats were allowed free access to each of these eight diets for 3.5 wk prior to DMABP administration and for an additional 8 wk after the first DMABP injection. Rats fed low dietary copper had 105% (P < 0.0001) higher formation of DMABP-induced ACF than those fed adequate dietary copper. Rats ingesting low rather than adequate dietary manganese had 23% higher formation of ACF, and rats ingesting high rather than adequate dietary iron had 18% higher formation of ACF. Heart total superoxide dismutase activity was significantly correlated with the number of ACF (r = -0.43, P < 0.0001) in rats administered DMABP. These results suggest that dietary alterations that affect superoxide dismutase activity may affect cancer susceptibility.  (+info)

Molecular and genetic damage from environmental tobacco smoke in young children. (2/127)

To assess the risks of early life exposure to environmental tobacco smoke (ETS), we tested whether four biomarkers in peripheral blood were associated with home ETS exposure in Hispanic and African-American children. The biomarkers included cotinine (a metabolite of nicotine) and three indicators of molecular and genetic damage from mutagens/carcinogens, protein adducts formed by the carcinogens 4-aminobiphenyl (4-ABP) and polycyclic aromatic hydrocarbons (PAHs), and sister chromatid exchanges (SCEs). We also explored possible ethnic differences in biomarkers. The study cohort comprised 109 Hispanic and African-American preschool children (1-6 years of age). Plasma cotinine was analyzed by gas chromatography, 4-ABP-hemoglobin adducts by gas chromatography-mass spectroscopy, PAH-albumin adducts by ELISA, and SCEs by cytogenetic techniques. Data on the amount of smoking by mothers (average 10.5 cigarettes per day) and other household members and regular visitors (average 6.5 cigarettes per day) were obtained by interview-administered questionnaires. Cotinine, 4-ABP-hemoglobin adducts, and PAH-albumin were significantly higher (P < 0.05) in the ETS-exposed children compared with the unexposed. SCEs were marginally higher (P = 0.076). African-American children had higher levels of cotinine (P = 0.059) and PAH-albumin (P = 0.02) than Hispanic children, after controlling for exposure to ETS. These results indicate molecular and genetic damage in minority children with  (+info)

Quantitative analysis of 4-aminobiphenyl-C8-deoxyguanosyl DNA adducts produced in vitro and in vivo using HPLC-ES-MS. (3/127)

Electrospray mass spectrometry (ES-MS) is a powerful tool for analysis of carcinogen-adducted DNA. In this study, we developed a quantitative isotope dilution method for analysis of N-(deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-4-ABP), the principal nucleoside adduct derived from enzymatic hydrolysis of 4-aminobiphenyl (4-ABP)-modified DNA. The method used column switching valves to perform on-line sample concentration and cleanup, which permitted direct analysis of enzymatic DNA hydrolysates using narrow-bore liquid chromatography (LC). ES-MS detection was performed using a single quadrupole instrument by monitoring M+H+ and two fragment ions characteristic for dG-C8-4-ABP, along with M+H+ and a fragment ion for the deuterated internal standard. The detection limit for dG-C8-4-ABP in DNA hydrolysates was approximately 10 pg on-column, equivalent to 0.7 dG-C8-4-ABP adducts in 10(7) normal nucleotides for a sample containing 100 microg DNA. The method was applied to the analysis of calf thymus DNA modified in vitro through reaction with N-hydroxy-4-ABP and of hepatic DNA isolated from mice treated in vivo with two dose levels of 4-ABP.  (+info)

Human and Escherichia coli beta-glucuronidase hydrolysis of glucuronide conjugates of benzidine and 4-aminobiphenyl, and their hydroxy metabolites. (4/127)

Individuals exposed to carcinogenic aromatic amines excrete arylamine N- and O-glucuronide metabolites. This study assessed the susceptibility of selected glucuronides to hydrolysis by human and Escherichia coli beta-glucuronidase. N- or O-glucuronides were prepared with the following aglycones: benzidine, N-acetylbenzidine, N'-hydroxy-N-acetylbenzidine, N-hydroxy-N-acetylbenzidine, N-hydroxy-N,N'-diacetylbenzidine, 3-hydroxy-N,N'-diacetylbenzidine, 3-hydroxy-benzidine, 4-aminobiphenyl, N-hydroxy-4-aminobiphenyl, and N-hydroxy-N-acetyl-4-aminobiphenyl. The (3)H- and (14)C-labeled glucuronides were prepared with human or rat liver microsomes using UDP-glucuronic acid as cosubstrate. Each of the 10 glucuronides (6-12 microM) was incubated at pH 5.5 or 7.0 with either human recombinant (pure) or E. coli (commercial preparation) beta-glucuronidase for 30 min at 37 degrees C. Hydrolysis was measured by HPLC. Reaction conditions were optimized, using the O-glucuronide of N-hydroxy-N,N'-diacetylbenzidine. Both enzymes preferentially hydrolyzed O-glucuronides over N-glucuronides and distinguished between structural isomers. With E. coli beta-glucuronidase at pH 7.0, selectivity was demonstrated by the complete hydrolysis of N-hydroxy-N-acetyl-4-aminobiphenyl O-glucuronide in the presence of N-acetylbenzidine N-glucuronide, which was not hydrolyzed. Metabolism by both enzymes was completely inhibited by the specific beta-glucuronidase inhibitor saccharic acid-1,4-lactone (0.5 mM). The concentration of human beta-glucuronidase necessary to achieve significant hydrolysis of glucuronides was substantially more than the amount of enzyme reported previously to be present in urine under either normal or pathological conditions. The bacterial enzyme may hydrolyze O-glucuronides, but not N-glucuronides, in urine at neutral pH. Thus, the nonenzymatic hydrolysis of N-glucuronides by acidic urine is likely a more important source of free amine than enzymatic hydrolysis.  (+info)

CYP1A2 is not the primary enzyme responsible for 4-aminobiphenyl-induced hepatocarcinogenesis in mice. (5/127)

4-Aminobiphenyl (4-ABP), a potent carcinogen in rodents (liver cancer) and human (bladder cancer), is found as an environmental contaminant and in tobacco smoke. Hemoglobin adducts and lung DNA adducts of 4-ABP are found in tobacco smokers. In vitro metabolism studies with human and rat liver microsomes have shown that CYP1A2 is primarily responsible for catalyzing N-hydroxylation, the initial step in the metabolic activation of 4-ABP. To determine whether this P450 is a rate limiting pathway for hepatocarcinogenesis, CYP1A2-null mice were analyzed at 16 months of age and were compared with wild-type mice in their response to 4-ABP using the neonatal mouse bioassay and two different doses of the carcinogen. Overall differences in incidences of hepatocellular adenoma, carcinoma and preneoplastic foci were not significant between either genotypes or 4-ABP doses used, whereas small, but significant, differences were found for specific types of foci. These results suggest that while CYP1A2 levels may not be rate limiting for 4-ABP metabolism to produce tumors and foci, it may modulate the induction process of some types of liver foci in either a positive or negative manner. In vitro studies using CYP1A2-null and wild-type mouse liver microsomes revealed that CYP1A2 is not the sole P450 required for 4-ABP N-hydroxylation and that another, yet to be identified, P450 is likely to be involved.  (+info)

Mortalities of workers at the Nitro plant with exposure to 2-mercaptobenzothialzole. (6/127)

OBJECTIVES: An update of a study of workers exposed to 2-mercaptobenzothiazole (MBT) at a rubber chemicals plant in Nitro, West Virginia is reported. The earlier study found high rates of lung cancer, prostate cancer, and bladder cancer in these workers who also had potential exposure to 4-aminobiphenyl (PAB), a potent bladder carcinogen. METHODS: This cohort mortality study examines the mortalities of 1059 full time white male production workers employed at the plant from 1955 to 1977. A detailed exposure assessment was done on the 600 workers with exposure to MBT. Nine years of additional follow up to the previous study are added. RESULTS: It was found that MBT workers have expected rates of lung (standardised mortality ratio (SMR) = 1.0 95% confidence interval (95% CI) 0.7 to 1.5) and prostate (SMR = 0.9, 95% CI 0.2 to 2.3) cancer. There was an excess of bladder cancer among MBT workers who had definite exposure to PAB (SMR = 27.1, 95% CI 11.7 to 53.4), and MBT workers with potential exposure to PAB (SMR = 4.3, 95% CI 1.4 to 10.0). However, there were no deaths from bladder cancer among workers with no exposure to PAB (SMR = 0.0, 95% CI 0.0 to 24.7), although there were only 0.2 deaths expected. CONCLUSIONS: The potential confounding of exposure to an unknown portion of PAB in the MBT workers makes it impossible to evaluate risk of bladder cancer in this population at this time. However, exposure to MBT does not seem to increase the risk of most cancers including cancers of the lung and prostate.  (+info)

Redoxal as a new lead structure for dihydroorotate dehydrogenase inhibitors: a kinetic study of the inhibition mechanism. (7/127)

Mitochondrial dihydroorotate dehydrogenase (DHOdehase; EC 1.3.99.11) is a target of anti-proliferative, immunosuppressive and anti-parasitic agents. Here, redoxal, (2,2'-[3,3'-dimethoxy[1, 1'-biphenyl]-4,4'-diyl)diimino]bis-benzoic acid, was studied with isolated mitochondria and the purified recombinant human and rat enzyme to find out the mode of kinetic interaction with this target. Its pattern of enzyme inhibition was different from that of cinchoninic, isoxazol and naphthoquinone derivatives and was of a non-competitive type for the human (K(ic)=402 nM; K(iu)=506 nM) and the rat enzyme (K(ic)=116 nM; K(iu)=208 nM). The characteristic species-related inhibition of DHOdehase found with other compounds was less expressed with redoxal. In human and rat mitochondria, redoxal did not inhibit NADH-induced respiration, its effect on succinate-induced respiration was marginal. This was in contrast to the sound effect of atovaquone and dichloroallyl-lawsone, studied here for comparison. In human mitochondria, the IC(50) value for the inhibition of succinate-induced respiration by atovaquone was 6.1 microM and 27.4 microM for the DHO-induced respiration; for dichlorallyl-lawsone, the IC(50) values were 14.1 microM and 0.23 microM.  (+info)

N-acetyltransferase 2 phenotype but not NAT1*10 genotype affects aminobiphenyl-hemoglobin adduct levels. (8/127)

Aminobiphenyls (ABPs) in tobacco have been implicated in bladder cancer etiology in smokers. N-Acetylation of ABPs in the liver, predominantly by the N-acetyltransferase 2 (NAT2) isozyme, represents a detoxification pathway, whereas O-acetylation of N-hydroxy-ABPs in the bladder, predominantly by the N-acetyltransferase 1 (NAT1) isozyme, represents a bioactivation pathway. We and others have demonstrated that NAT2 phenotype affects 3- and 4-ABP-hemoglobin adduct levels (higher levels in slow acetylators), which are considered valid biomarkers of the internal dose of ABP to the bladder. We have also shown that NAT1 genotype (NAT1*10 allele) is associated with increased DNA adduct levels in urothelial tissue and higher risk of bladder cancer among smokers. It is not known whether NAT1*10 genotype influences ABP-hemoglobin adduct levels. Therefore, we assessed 403 primarily non-Hispanic white residents of Los Angeles County for their NAT2 acetylator phenotype, NAT1*10 acetylator genotype, and 3- and 4-ABP-hemoglobin adduct levels. Eighty-two subjects were current tobacco smokers of varying intensities. Tobacco smokers had significantly higher mean 3- and 4-ABP-hemoglobin adduct levels relative to nonsmokers. The levels increased with increased amounts smoked per day (two-sided, P < 0.0001 in all cases). With adjustment for NAT1 genotype and race, the smoking-adjusted geometric mean level of 3-ABP-hemoglobin adducts in NAT2 slow acetylators was 47% higher than that in NAT2 rapid acetylators (P = 0.01). The comparable value for 4-ABP-hemoglobin adducts was 17% (P = 0.02). In contrast, no association between NAT1*10 genotype and 3- or 4 ABP-hemoglobin adduct levels was observed after adjustment for NAT2 phenotype, smoking, and race. The present study suggests that the impact of the NAT1*10 genotype on 3- and 4-ABP-hemoglobin adducts is noninformative on the possible association between NAT1 activity and bladder cancer risk.  (+info)