Reduced pyrazinamidase activity and the natural resistance of Mycobacterium kansasii to the antituberculosis drug pyrazinamide. (1/2620)

Pyrazinamide (PZA), an analog of nicotinamide, is a prodrug that requires conversion to the bactericidal compound pyrazinoic acid (POA) by the bacterial pyrazinamidase (PZase) activity of nicotinamidase to show activity against Mycobacterium tuberculosis. Mutations leading to a loss of PZase activity cause PZA resistance in M. tuberculosis. M. kansasii is naturally resistant to PZA and has reduced PZase activity along with an apparently detectable nicotinamidase activity. The role of the reduction in PZase activity in the natural PZA resistance of M. kansasii is unknown. The MICs of PZA and POA for M. kansasii were determined to be 500 and 125 micrograms/ml, respectively. Using [14C]PZA and [14C]nicotinamide, we found that M. kansasii had about 5-fold-less PZase activity and about 25-fold-less nicotinamidase activity than M. tuberculosis. The M. kansasii pncA gene was cloned on a 1.8-kb BamHI DNA fragment, using M. avium pncA probe. Sequence analysis showed that the M. kansasii pncA gene encoded a protein with homology to its counterparts from M. tuberculosis (69.9%), M. avium (65.6%), and Escherichia coli (28.5%). Transformation of naturally PZA-resistant M. bovis BCG with M. kansasii pncA conferred partial PZA susceptibility. Transformation of M. kansasii with M. avium pncA caused functional expression of PZase and high-level susceptibility to PZA, indicating that the natural PZA resistance in M. kansasii results from a reduced PZase activity. Like M. tuberculosis, M. kansasii accumulated POA in the cells at an acidic pH; however, due to its highly active POA efflux pump, the naturally PZA-resistant species M. smegmatis did not. These findings suggest the existence of a weak POA efflux mechanism in M. kansasii.  (+info)

Thermostability reinforcement through a combination of thermostability-related mutations of N-carbamyl-D-amino acid amidohydrolase. (2/2620)

For the improvement of N-carbamyl-D-amino acid amidohydrolase (DCase), which can be used for the industrial production of D-amino acids, the stability of DCase from Agrobacterium sp. KNK712 was improved through various combinations of thermostability-related mutations. The thermostable temperature (defined as the temperature on heat treatment for 10 min that caused a decrease in the DCase activity of 50%) of the enzyme which had three amino acids, H57Y, P203E, and V236A, replaced was increased by about 19 degrees C. The mutant DCase, designated as 455M, was purified and its enzymatic properties were studied. The enzyme had highly increased stability against not only temperature but also pH, the optimal temperature of the enzyme being about 75 degrees C. The substrate specificity of the enzyme for various N-carbamyl-D-amino acids was changed little in comparison with that of the native enzyme. Enzymochemical parameters were also measured.  (+info)

Insertion analysis of putative functional elements in the promoter region of the Aspergillus oryzae Taka-amylase A gene (amyB) using a heterologous Aspergillus nidulans amdS-lacZ fusion gene system. (3/2620)

Expression of the Taka-amylase A gene (amyB) of Aspergillus oryzae is induced by starch or maltose. The A. oryzae amyB gene promoter contains three highly conserved sequences, designated Regions I, II, and III, compared with promoter regions of the A. oryzae glaA encoding glucoamylase and the agdA encoding alpha-glucosidase. To identify the function of these sequences within the amyB promoter, various fragments containing conserved sequences in the amyB promoter were introduced into the upstream region of the heterologous A. nidulans amdS gene (encoding acetamidase) fused to the Escherichia coli lacZ gene as a reporter. Introduction of the sequence between -290 to -233 (the number indicates the distance in base pairs from the translation initiation point (+1)) containing Region III significantly increased the expression of the lacZ reporter gene in the presence of maltose. The sequence between -377 to -290 containing Region I also increased the lacZ activity, but its maltose inducibility was less than that of Region III. The sequence between -233 to -181 containing Region II had no effect on the expression. These results indicated that Region III is most likely involved in the maltose induction of the amyB gene expression.  (+info)

Human biotinidase isn't just for recycling biotin. (4/2620)

For years, the major role of biotin has been as the coenzyme for four carboxylases in humans. Although there has been evidence that biotin might have other functions, none has been firmly established. The discovery that human serum biotinidase has biotinyl-transferase activity, in addition to biotinidase hydrolase activity, presents new possibilities for the role of biotinidase in biotin metabolism. Specific transfer of biotin to histones by biotinidase provides a possible explanation for why biotin is found in the nucleus and the nature of its role in the regulation of protein transcription. Future studies will help to determine the functions of biotinidase in biotin metabolism and in disease states.  (+info)

IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. (5/2620)

Amide-linked conjugates of indole-3-acetic acid (IAA) are putative storage or inactivation forms of the growth hormone auxin. Here, we describe the Arabidopsis iar3 mutant that displays reduced sensitivity to IAA-Ala. IAR3 is a member of a family of Arabidopsis genes related to the previously isolated ILR1 gene, which encodes an IAA-amino acid hydrolase selective for IAA-Leu and IAA-Phe. IAR3 and the very similar ILL5 gene are closely linked on chromosome 1 and comprise a subfamily of the six Arabidopsis IAA-conjugate hydrolases. The purified IAR3 enzyme hydrolyzes IAA-Ala in vitro. iar 3 ilr1 double mutants are more resistant than either single mutant to IAA-amino acid conjugates, and plants overexpressing IAR3 or ILR1 are more sensitive than is the wild type to certain IAA-amino acid conjugates, reflecting the overlapping substrate specificities of the corresponding enzymes. The IAR3 gene is expressed most strongly in roots, stems, and flowers, suggesting roles for IAA-conjugate hydrolysis in those tissues.  (+info)

Characterization of a novel rat brain glycosylphosphatidylinositol-anchored protein (Kilon), a member of the IgLON cell adhesion molecule family. (6/2620)

In the central nervous system, many cell adhesion molecules are known to participate in the establishment and remodeling of the neural circuit. Some of the cell adhesion molecules are known to be anchored to the membrane by the glycosylphosphatidylinositol (GPI) inserted to their C termini, and many GPI-anchored proteins are known to be localized in a Triton-insoluble membrane fraction of low density or so-called "raft." In this study, we surveyed the GPI-anchored proteins in the Triton-insoluble low density fraction from 2-week-old rat brain by solubilization with phosphatidylinositol-specific phospholipase C. By Western blotting and partial peptide sequencing after the deglycosylation with peptide N-glycosidase F, the presence of Thy-1, F3/contactin, and T-cadherin was shown. In addition, one of the major proteins, having an apparent molecular mass of 36 kDa after the peptide N-glycosidase F digestion, was found to be a novel protein. The result of cDNA cloning showed that the protein is an immunoglobulin superfamily member with three C2 domains and has six putative glycosylation sites. Since this protein shows high sequence similarity to IgLON family members including LAMP, OBCAM, neurotrimin, CEPU-1, AvGP50, and GP55, we termed this protein Kilon (a kindred of IgLON). Kilon-specific monoclonal antibodies were produced, and Western blotting analysis showed that expression of Kilon is restricted to brain, and Kilon has an apparent molecular mass of 46 kDa in SDS-polyacrylamide gel electrophoresis in its expressed form. In brain, the expression of Kilon is already detected in E16 stage, and its level gradually increases during development. Kilon immunostaining was observed in the cerebral cortex and hippocampus, in which the strongly stained puncta were observed on dendrites and soma of pyramidal neurons.  (+info)

Evidence for the existence of an unfolding intermediate state for aminoacylase during denaturation in guanidine solutions. (7/2620)

The equilibrium unfolding of pig kidney aminoacylase in guanidinium chloride (GdmCl) solutions was studied by following the fluorescence and circular dichroism (CD). At low concentrations of GdmCl, less than 1.0 M, the fluorescence intensity decreased with a slight red shift of the emission maximum (from 335 to 340 nm). An unfolding intermediate was observed in low concentrations of denaturant (between 1.2 and 1.6 M GdmCl). This intermediate was characterized by a decreased fluorescence emission intensity, a red-shifted emission maximum, and increased binding of the fluorescence probe 1-anilino-8-naphthalenesulfonate. No significant changes of the secondary structure were indicated by CD measurement. This conformation state is similar to a molten globule state which may exist in the pathway of protein folding. Further changes in the fluorescence properties occurred at higher concentrations of GdmCl, more than 1.6 M, with a decrease in emission intensity and a significant red shift of the emission maximum from 340 to 354 nm. In this stage, the secondary structure was completely broken. A study of apo-enzyme (Zn2+-free enzyme) produced similar results. However, comparison of the changes of the fluorescence emission spectra of native (Holo-) enzyme with Zn2+-free (Apo-) enzyme at low GdmCl concentrations showed that the structure of the Holo-enzyme was more stable than that of the Apo-enzyme.  (+info)

Processing of the fibrillin-1 carboxyl-terminal domain. (8/2620)

To investigate the processing and general properties of the fibrillin-1 carboxyl-terminal domain, three protein expression constructs have been developed as follows: one without the domain, one with the domain, and one with a mutation near the putative proteolytic processing site. The constructs have been expressed in two eukaryotic model systems, baculoviral and CHO-K1. Post-translational modifications that normally occur in fibrillin-1, including glycosylation, signal peptide cleavage, and carboxyl-terminal processing, occur in the three constructs in both cell systems. Amino-terminal sequencing of secreted protein revealed leader sequence processing at two sites, a primary site between Gly-24/Ala-25 and a secondary site of Ala-27/Asn-28. Processing of the carboxyl-terminal domain could be observed by migration differences in SDS-polyacrylamide gel electrophoresis and was evident in both mammalian and insect cells. Immunological identification by Western blotting confirmed the loss of the expected region. The failure of both cell systems to process the mutant construct shows that the multi-basic sequence is the site of proteolytic processing. Cleavage of the fibrillin-1 carboxyl-terminal domain occurred intracellularly in CHO-K1 cells in an early secretory pathway compartment as demonstrated by studies with secretion blocking agents. This finding, taken with the multi-basic nature of the cleavage site and observed calcium sensitivity of cleavage, suggests that the processing enzyme is a secretory pathway resident furin-like protease.  (+info)