Role of a novel photosystem II-associated carbonic anhydrase in photosynthetic carbon assimilation in Chlamydomonas reinhardtii. (1/582)

Intracellular carbonic anhydrases (CA) in aquatic photosynthetic organisms are involved in the CO2-concentrating mechanism (CCM), which helps to overcome CO2 limitation in the environment. In the green alga Chlamydomonas reinhardtii, this CCM is initiated and maintained by the pH gradient created across the chloroplast thylakoid membranes by photosystem (PS) II-mediated electron transport. We show here that photosynthesis is stimulated by a novel, intracellular alpha-CA bound to the chloroplast thylakoids. It is associated with PSII on the lumenal side of the thylakoid membranes. We demonstrate that PSII in association with this lumenal CA operates to provide an ample flux of CO2 for carboxylation.  (+info)

The chloroplast infA gene with a functional UUG initiation codon. (2/582)

All chloroplast genes reported so far possess ATG start codons and sometimes GTGs as an exception. Sequence alignments suggested that the chloroplast infA gene encoding initiation factor 1 in the green alga Chlorella vulgaris has TTG as a putative initiation codon. This gene was shown to be transcribed by RT-PCR analysis. The infA mRNA was translated accurately from the UUG codon in a tobacco chloroplast in vitro translation system. Mutation of the UUG codon to AUG increased translation efficiency approximately 300-fold. These results indicate that the UUG is functional for accurate translation initiation of Chlorella infA mRNA but it is an inefficient initiation codon.  (+info)

Internuclear gene silencing in Phytophthora infestans. (3/582)

Transformation of the diploid oomycete plant pathogen Phytophthora infestans with antisense, sense, and promoter-less constructs of the coding sequence of the elicitin gene inf1 resulted in transcriptional silencing of both the transgenes and the endogenous gene. Since heterokaryons obtained by somatic fusion of an inf1-silenced transgenic strain and a wild-type strain displayed stable gene silencing, inf1 silencing is dominant and acts in trans. Inf1 remained silenced in nontransgenic homokaryotic progeny from the silenced heterokaryons, thereby demonstrating that the presence of transgenes is not essential for maintaining the silenced status of the endogenous inf1 gene. These findings support a model reminiscent of paramutation and involving a trans-acting factor that is capable of transferring a silencing signal between nuclei.  (+info)

A 210 kDa protein is located in a membrane-microtubule linker at the distal end of mature and nascent basal bodies. (4/582)

A monoclonal antibody raised against purified flagellar basal apparatuses from the green flagellate Spermatozopsis similis reacted with a protein of 210 kDa (p210) in western blots. The protein was partially cloned by immunoscreening of a cDNA library. The sequence encoded a novel protein rich in alanine (25%) and proline (20%), which contained regions similar to proteins of comparable amino acid composition such as extracellular matrix components or the membrane-cytoskeletal linker synapsin. Using a polyclonal antibody (anti-p210) raised against the C-terminal part of p210, it was shown that the protein was highly enriched in the basal apparatuses. Immunogold electron microscopy of isolated cytoskeletons or whole cells revealed that p210 was located in the flagellar transition region. The protein was part of the Y-shaped fibrous linkers between the doublet microtubules and the flagellar membrane, as indicated by statistical analysis of post-labeled sections using anti-centrin and anti-tubulin as controls. In premitotic cells p210 was located in a fibrous layer at the distal end of nascent basal bodies, which was perforated by the outgrowing axoneme. During deflagellation the protein remained at the basal body but we observed changes in its distribution, indicating that p210 partially moved to the tip of the basal body. p210 can be used as a marker to determine basal body position, orientation (parallel or antiparallel) and number in S. similis by indirect immunofluorescence. We suppose that p210 is involved in linking basal bodies to the plasma membrane, which is an important step during ciliogenesis.  (+info)

Crystal structure of carboxylase reaction-oriented ribulose 1, 5-bisphosphate carboxylase/oxygenase from a thermophilic red alga, Galdieria partita. (5/582)

Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1. 39) obtained from a thermophilic red alga Galdieria partita has the highest specificity factor of 238 among the Rubiscos hitherto reported. Crystal structure of activated Rubisco from G. partita complexed with the reaction intermediate analogue, 2-carboxyarabinitol 1,5-bisphosphate (2-CABP) has been determined at 2.4-A resolution. Compared with other Rubiscos, different amino residues bring the structural differences in active site, which are marked around the binding sites of P-2 phosphate of 2-CABP. Especially, side chains of His-327 and Arg-295 show the significant differences from those of spinach Rubisco. Moreover, the side chains of Asn-123 and His-294 which are reported to bind the substrate, ribulose 1,5-bisphosphate, form hydrogen bonds characteristic of Galdieria Rubisco. Small subunits of Galdieria Rubisco have more than 30 extra amino acid residues on the C terminus, which make up a hairpin-loop structure to form many interactions with the neighboring small subunits. When the structures of Galdieria and spinach Rubiscos are superimposed, the hairpin region of the neighboring small subunit in Galdieria enzyme and apical portion of insertion residues 52-63 characteristic of small subunits in higher plant enzymes are almost overlapped to each other.  (+info)

Promotion of ATP and S-140 to ribosome inactivation with camphorin, cinnamomin, and other RNA N-glycosidases. (6/582)

AIM: To study the effect of ATP and extra-ribosomal factors (S-140) on type I and type II RNA N-glycosidases in inactivating ribosome. METHODS: The activity of ATP and S-140 was determined by characterization of R-fragment in gel. An improved two-step method of cell-free protein synthesis system was used to quantitate the requirements of S-140 in ribosome inactivation. RESULTS: IC50 ratios of camphorin, gamma-momorcharin, luffin S, luffin A, trichosanthin (type I); and ricin, ricin A-chain; cinnamonin, cinnamomin A-chain (type II) between the absence and presence of ATP and S-140 were 3108, 151, 51, 45, 15; and 47, 7, 26, 12, respectively. CONCLUSION: The ribosome-inactivating activity of type II ribosome-inactivating proteins, including intact protein and its A-chain, was promoted by ATP and S-140. Camphorin showed a significant difference from cinnamomin in need of ATP and S-140 for such promoting.  (+info)

The 2.1 A structure of an elicitin-ergosterol complex: a recent addition to the Sterol Carrier Protein family. (7/582)

Elicitins, produced by most of the phytopathogenic fungi of the genus Phytophthora, provoke in tobacco both remote leaf necrosis and the induction of a resistance against subsequent attack by various microorganisms. Despite the recent description of the three-dimensional crystal structure of cryptogein (CRY), the molecular basis of the interactions between Phytophthora and plants largely remains unknown. The X-ray crystal structure, refined at 2.1 A, of a ligand complexed, mutated CRY, K13H, is reported. Analysis of this structure reveals that CRY is able to encapsulate a ligand that induces only a minor conformational change in the protein structure. The ligand has been identified as an ergosterol by gas chromatographic analysis coupled with mass spectrometry analysis. This result is consistent with biochemical data that have shown that elicitins are a distinct class of Sterol Carrier Proteins (SCP). Data presented here provide the first structural description of the pertinent features of the elicitin sterol interaction and permit a reassessment of the importance of both the key residue 13 and the mobility of the omega loop for the accessibility of the sterol to the cavity. The biological implications thereof are discussed. This paper reports the first structure of a SCP/sterol complex.  (+info)

Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes. (8/582)

Using elicitins, proteins secreted by some phytopathogenic Oomycetes (Phytophthora) known to be able to transfer sterols between phospholipid vesicles, the transfer of sterols between micelles, liposomes and biological membranes was studied. Firstly, a simple fluorometric method to screen the sterol-carrier capacity of proteins, avoiding the preparation of sterol-containing phospholipidic vesicles, is proposed. The transfer of sterols between DHE micelles (donor) and stigmasterol or cholesterol micelles (acceptor) was directly measured, as the increase in DHE fluorescence signal. The results obtained with this rapid and easy method lead to the same conclusions as those previously reported, using fluorescence polarization of a mixture of donor and acceptor phospholipid vesicles, prepared in the presence of different sterols. Therefore, the micelles method can be useful to screen proteins for their sterol carrier activity. Secondly, elicitins are shown to trap sterols from purified plant plasma membranes and to transfer sterols from micelles to these biological membranes. This property should contribute to understand the molecular mechanism involved in sterol uptake by Phytophthora. It opens new perspectives concerning the role of such proteins in plant-microorganism interactions.  (+info)