Enamel reduction procedures in orthodontic treatment. (1/37)

Various combinations of enamel reduction procedures can be used to create space between teeth, to correct discrepancies between mandibular and maxillary teeth and to correct morphologic anomalies during orthodontic treatment. In particular, acid-enhanced interproximal enamel reduction significantly reduces surface roughness. This article presents a review of the literature on enamel reduction procedures.  (+info)

In vitro evaluation of bond strength and surface roughness of a resin-paint material. (2/37)

This study investigated the stability of a resin-paint material (Master Palette)--which was developed for chairside shade modification of composite restorations--by evaluating its bond strength to indirect resin composite and surface degradation. Bond strength was evaluated with four surface treatments including an application of methylene chloride, airborne particle abrasion with 50 microm aluminum oxide, and additional applications of bonding agents after air-abrasion. The surface roughness (Rz value) of both the resin-paint and indirect resin composite before and after thermo-cycling (4-60 degrees C, 50,000 cycles) was also evaluated. All data were statistically analyzed by two-way ANOVA and Boneferroni's test (p=0.05). It was found that bond strength was improved by bonding agent application (14.9+/-1.9 MPa to 18.6+/-2.2 MPa, p<0.0054) after thermo-cycling. As for surface roughness, its results after thermo-cycling (2.7+/-0.2 microm, p<0.001) demonstrated that the resin-paint needed further improvements to maintain the original surface texture.  (+info)

Sandblasting of inlay margin--marginal abrasion and bond strength. (3/37)

Specimens (such as metal inlays) with 30 degrees or 45 degrees marginal bevel were prepared by casting with a 12% Au-Pd-Ag alloy or a gold alloy. A form of the marginal bevel was traced on a profile projector before and after sandblasting, and the length of the abraded margin measured. All the blasting conditions abraded the marginal bevel, while the blasting at 20 mm for 2 seconds brought about the least abrasion of approximately 10 microm in the 45 degrees specimen cast with Au-Pd-Ag alloy. The gold alloy specimens were abraded more than the Au-Pd-Ag alloy ones; those with marginal bevel of 30 degrees were abraded more than those of 45 degrees. On the other hand, the effect of different blasting conditions on the bond strength of units bonded with resin cement was evaluated (under selected blasting conditions known to cause relatively less damage to the marginal level). Specimens treated by sandblaster exhibited a comparable tensile bond strength, while specimens without sandblasting but applied with only an alloy primer showed a statistically low value.  (+info)

Effect of noble metal adhesive systems on bonding between an indirect composite material and a gold alloy. (4/37)

In this study, the bond strength between an indirect composite and a gold alloy was determined for the purpose of evaluating noble metal bonding systems. A single liquid primer designed for conditioning noble metal alloys (Infis Opaque Primer) and tri-n-butylborane-initiated adhesive resins (Super-Bond C & B), with or without the powder component, were assessed. Cast gold alloy disks (Casting Gold type IV) were air-abraded with alumina, followed by six surface preparations, and were then bonded with a light-activated composite material (New Metacolor Infis). Shear testing was performed both before and after thermocycling for evaluation of bond durability. The results showed that three primed groups improved post-thermocycling bond strengths compared to each of the corresponding unprimed groups (P < 0.01). The bond strength was reduced for all six groups by the application of thermocycling (P < 0.01). After thermocycling, the group primed with the Infis Opaque Primer material and bonded with the Super-Bond C & B resin exhibited the greatest bond strength (23.4 MPa). The Infis Opaque Primer and Super-Bond bonding system increased the post-thermocycling bond strength of the control group by a factor of approximately ten. This simple technique is applicable in the fabrication of composite veneered restorations and cone-telescope dentures.  (+info)

Office reconditioning of stainless steel orthodontic attachments. (5/37)

An investigation was conducted to determine a simple, effective method for reconditioning stainless steel orthodontic attachments in the orthodontic office. In total, 100 new brackets were bonded to premolar teeth, then debonded and the bond strength recorded as a control for the reconditioning process. The debonded brackets were divided into six groups and each group reconditioned using different techniques as follows: attachments in four groups were flamed and then either (1) sandblasted, (2) ultrasonically cleaned, (3) ultrasonically cleaned followed by silane treatment, (4) rebonded without further treatment. Of the two remaining groups, one was sandblasted, while the brackets in the other were roughened with a greenstone. The brackets were rebonded to the premolar teeth after the enamel surfaces had been re-prepared, and their bond strengths measured. The results indicated that sandblasting was the most effective in removing composite without a significant change in bond strength compared with new attachments. Silane application did not improve the bond strength values of flamed and ultrasonically cleaned brackets. Attachments that had only been flamed had the lowest bond strength, followed by those that had been roughened with a greenstone.  (+info)

Microleakage on Class V glass ionomer restorations after cavity preparation with aluminum oxide air abrasion. (6/37)

This in vitro study assessed the marginal microleakage on class V cavities prepared with aluminum oxide air abrasion and restored with different glass ionomer cements. The cavities were prepared on the buccal and lingual surfaces of 15 sound third molars with an air- abrasion device (Kreativ Mach 4.1; New Image) using a 27.5-microm aluminum oxide particle stream, and were assigned to 3 groups of 10 cavities each. The restorative materials were: group I, a conventional glass ionomer cement (Ketac-Fil); groups II and III, resin-modified glass ionomer cements (Vitremer R and Fuji II LC, respectively). After placement of the restorations, the teeth were stored in distilled water at 37 degrees C for 24 h, polished and then submitted to a thermocycling regimen of 500 cycles, isolated, immersed in 0.2% Rhodamine B solution for 24 h, included and serially sectioned. Microleakage was assessed by viewing the specimens under an optical microscope connected to a color video camera and a computer. The images obtained were digitized and analyzed for microleakage using software that allows for a standard quantitative assessment of dye penetration in millimeters. Statistical analysis was done using the Kruskall-Wallis and Wilcoxon tests. Means of dye penetration (%) were: occlusal - I: 25.76 +/- 34.35, II: 20.00 +/- 42.16, III: 28.25 +/- 41.67; cervical - I: 23.72 +/- 41.84; II: 44.22 +/- 49.69, III: 39.27 +/- 50.74. No statistically significant differences (p>0.05) were observed among either the glass ionomer cements or the margins. In conclusion, class V cavities restored with either conventional or resin-modified glass ionomer cements after preparation with aluminum oxide air abrasion did not show complete sealing at the enamel and dentin/cementum margins.  (+info)

Application of the total etching technique or self-etching primers on primary teeth after air abrasion. (7/37)

Since the use of air abrasion has grown in pediatric dentistry, the aim of this study was to evaluate, by means of shear bond strength testing, the need to use the total etching technique or self-etching primers on dentin of primary teeth after air abrasion. Twenty-five exfoliated primary molars had their occlusal dentin exposed by trimming and polishing. Specimens were treated by: Air abrasion + Scotchbond MultiPurpose adhesive (G1); 37% phosphoric acid + Scotchbond MP adhesive (G2); Clearfil SE (G3); Air abrasion + 37% phosphoric acid + Scotchbond MP adhesive (G4); Air abrasion + Clearfil SE (G5). On the treated surface, a cylinder of 2 mm by 6 mm was made using a composite resin (Z100). Duncan's test showed that: (G2 = G3 = G5) > (G1 = G4). The use of a self-etching primer on air abraded dentin is recommended to obtain higher bond strengths.  (+info)

Effects of surface conditioning on bond strength of metal brackets to all-ceramic surfaces. (8/37)

The aim of this study was to determine the effectiveness of bonding brackets to ceramic restorations. Sixty feldspathic and 60 lithium disilicate ceramic specimens were randomly divided into six groups. Shear bond strength (SBS) and bond failure types were examined with six surface-conditioning methods: silane application to glazed surface, air particle abrasion (APA) with 25- and 50-microm aluminium trioxide (Al(2)O(3)), etching with 9.6 per cent hydrofluoric acid (HFA), and roughening with 40- and 63-microm diamond burs. Silane was applied to all roughened surfaces. Metal brackets were bonded with light cure composite, then stored in distilled water for 1 week and thermocycled (x500 at 5-55 degrees C for 30 seconds). The ceramic surfaces were examined with a stereomicroscope at a magnification of x10 to determine the amount of composite resin remaining using the adhesive remnant index. The lowest SBS values were obtained with HFA for feldspathic (5.39 MPa) and lithium disilicate (11.11 MPa) ceramics; these values were significantly different from those of the other groups. The highest SBS values were found with 63-microm diamond burs for feldspathic (26.38 MPa) and lithium disilicate (28.20 MPa) ceramics, and were not significantly different from 40-microm diamond burs for feldspathic and lithium disilicate ceramics (26.04 and 24.26 MPa, respectively). Roughening with 25- and 50-microm Al(2)O(3) particles showed modest SBS for lithium disilicate (22.60 and 26.15 MPa, respectively) and for feldspathic ceramics (17.90 and 14.66 MPa, respectively). Adhesive failures between the ceramic and composite resin were noted in all groups. Damage to the porcelain surfaces was not observed. The SBS values were above the optimal range, except for feldspathic ceramic treated with HFA and silane. With all surface-conditioning methods, lithium disilicate ceramic displayed higher SBS than feldspathic ceramic.  (+info)