Luteinization and proteolysis in ovarian follicles of Meishan and Large White gilts during the preovulatory period. (1/164)

This experiment was conducted to determine why follicles luteinize faster in the Meishan breed than in the Large White breed of pig. Follicles were recovered during the late follicular phase from ovaries of both breeds before and after administration of hCG given to mimic the LH surge. First, the patterns of cholesterol transporters (high and low density lipoproteins: HDL and LDL) were compared. Cholesterol transporters detected in follicular fluid consisted of HDL only. Similar amounts of Apolipoprotein A-I were found in all samples. There was no obvious breed effect on minor lipoproteins found in the HDL-rich fraction, and this pattern was altered similarly by hCG in the two breeds. The LDL-rich samples of serum from both breeds contained similar amounts of protein. Second, three steroidogenic enzymes, adrenodoxin, 17 alpha-hydroxylase-lyase (P450(17) alpha) and 3 beta-hydroxysteroid-dehydrogenase (3 beta-HSD) were detected by immunohistochemistry and quantified by image analysis on sections of the two largest follicles. Before hCG treatment, theca interna cells demonstrated immunoreactivities for adrenodoxin (strong), P450(17) alpha and 3 beta-HSD (very strong), whereas granulosa cells displayed immunoreactivities for adrenodoxin only. After hCG treatment, the localization of the enzymes was unchanged but the staining intensity of adrenodoxin on granulosa cells and 3 beta-HSD on theca cells increased (P < 0.01 and P < 0.05, respectively). Breed effects were detected for the amounts of adrenodoxin in theca cells (Meishan > Large White; P < 0.05) and of 17 alpha-hydroxylase (Large White > Meishan, P < 0.01). Breed x treatment interactions were never detected. Finally, gelatinases, plasminogen activator, plasminogen activator inhibitor, tissue inhibitors of metalloproteases (TIMP-1 and TIMP-2) were visualized by direct or reverse zymography or western blotting. Whatever the stage relative to LH administration, follicular fluid from Large White gilts contained more TIMP-1, and TIMP-2 (P < 0.02 and P < 0.01, respectively). No breed effect was detected for the amounts of gelatinases and plasminogen activator inhibitor 1. However, for these parameters, a significant breed x time interaction was obvious, as the Meishan follicles had a greater response to hCG (P < 0.01). Since proteolysis plays a key role in the bioavailability of growth factors such as insulin-like growth factor 1, fibroblast growth factor and transforming growth factor beta, which have the ability to alter gonadotrophin-induced progesterone production in pigs, the differences observed in its control in the present study may explain, at least in part, the different patterns of luteinization observed in Meishan and Large White follicles.  (+info)

Enzymatic properties of vesicle-reconstituted human cytochrome P450SCC (CYP11A1) differences in functioning of the mitochondrial electron-transfer chain using human and bovine adrenodoxin and activation by cardiolipin. (2/164)

The recently reported heterologous expression and purification of both human cytochrome P450SCC and adrenodoxin [Woods, S.T., Sadleir, J., Downs, T., Triantopoulos, T., Haedlam, M.J. & Tuckey, R.C. (1998) Arch. Biochem. Biophys. 353, 109-115] has enabled us to perform studies with the membrane-reconstituted human enzymes to better understand the side-chain cleavage reaction in humans. Human P450SCC was successfully reconstituted into dioleoylphosphatidylcholine vesicles with and without cardiolipin and its enzymatic properties characterized in the membrane-bound state. Enhancement of the P450SCC activity and significant activation by cardiolipin were observed when human adrenodoxin instead of bovine adrenodoxin was used as electron donor. In the absence of cardiolipin, Km for cholesterol was decreased twice in the case of human adrenodoxin indicating enhanced cholesterol binding. On the other hand, in the presence of cardiolipin in the membrane both Km and V for cholesterol were decreased with human adrenodoxin as electron donor. Kinetic analysis of the interaction between human P450SCC and its redox partners provided evidence for enhanced binding of the human electron donor to human P450SCC indicated by both an increased V and decreased Kd for human adrenodoxin compared with the values with bovine adrenodoxin. Because no similar effects were observed in Tween 20 micelles, these results suggest that the phospholipid membrane may play an important role in the interaction of human adrenodoxin with human P450SCC.  (+info)

Interaction of CYP11B1 (cytochrome P-45011 beta) with CYP11A1 (cytochrome P-450scc) in COS-1 cells. (3/164)

The interactions of CYP11B1 (cytochrome P-45011beta), CYP11B2 (cytochrome P-450aldo) and CYP11A1 (cytochrome P-450scc) were investigated by cotransfection of their cDNA into COS-1 cells. The effect of CYP11A1 on CYP11B isozymes was examined by studying the conversion of 11-deoxycorticosterone to corticosterone, 18-hydroxycorticosterone and aldosterone. It was shown that when human or bovine CYP11B1 and CYP11A1 were cotransfected they competed for the reducing equivalents from the limiting source contained in COS-1 cells; this resulted in a decrease of the CYP11B activities without changes in the product formation patterns. The competition of human CYP11A1 with human CYP11B1 and CYP11B2 could be diminished with excess expression of bovine adrenodoxin. However, the coexpression of bovine CYP11B1 and CYP11A1 in the presence of adrenodoxin resulted in a stimulation of 11beta-hydroxylation activity of CYP11B1 and in a decrease of the 18-hydroxycorticosterone and aldosterone formation. These results suggest that the interactions of CYP11A1 with CYP11B1 and CYP11B2 do not have an identical regulatory function in human and in bovine adrenal tissue.  (+info)

Modulation of aldosterone biosynthesis by adrenodoxin mutants with different electron transport efficiencies. (4/164)

Aldosterone biosynthesis is highly regulated on different levels by hormones, potassium, lipid composition of the membrane and the molecular structure of its gene. Here, the influence of the electron transport efficiency from adrenodoxin (Adx) to CYP11B1 on the activities of bovine CYP11B1 has been investigated using a liposomal reconstitution system with truncated mutants of Adx. It could be clearly demonstrated that Adx mutants Adx 4-114 and Adx 4-108, possessing enhanced electron transfer abilities, produce increases in corticosterone and aldosterone biosynthesis. Based on the Vmax values of corticosterone and aldosterone formation, Adx 4-108 and Adx 4-114 enhance corticosterone synthesis 1.3-fold and aldosterone formation threefold and twofold, respectively. The production of 18-hydroxycorticosterone was changed only slightly in these Adx mutants. The effect of Adx 1-108 on the product patterns of bovine CYP11B1, human CYP11B1 and human CYP11B2 was confirmed in COS-1 cells by cotransfection of CYP11B- and Adx-containing expression vectors. It could be shown that Adx 1-108 enhances the formation of aldosterone by bovine CYP11B1 and by human CYP11B2, and stimulates the production of corticosterone by bovine CYP11B1 and human CYP11B1 and CYP11B2 also.  (+info)

Enzymatic properties of human 25-hydroxyvitamin D3 1alpha-hydroxylase coexpression with adrenodoxin and NADPH-adrenodoxin reductase in Escherichia coli. (5/164)

We have cloned human 25-hydroxyvitamin D3 1alpha-hydroxylase cDNAs from normal subjects and patients with pseudovitamin D-deficient rickets (PDDR), and expressed the cDNAs in Escherichia coli JM109 cells. Kinetic analysis of normal 1alpha-hydroxylase in the reconstituted system revealed that Km values for 25(OH)D3 and (24R), 25(OH)2D3 were 2.7 and 1.1 microM, respectively. The lower Km value and higher Vmax/Km value for (24R),25(OH)2D3 indicated that it is a better substrate than 25(OH)D3 for 1alpha-hydroxylase. These results are quite similar to those of mouse 1alpha-hydroxylase. To establish a highly sensitive in vivo system, 1alpha-hydroxylase, adrenodoxin and NADPH-adrenodoxin reductase were coexpressed in E. coli cells. The recombinant E. coli cells showed remarkably high 1alpha-hydroxylase activity, suggesting that the electrons were efficiently transferred from NADPH-adrenodoxin reductase through adrenodoxin to 1alpha-hydroxylase in E. coli cells. Using this system, the activities of four mutants of 1alpha-hydroxylase, R107H, G125E, R335P and P382S, derived from patients with PDDR were examined. Although no significant reduction in expression of these mutants was observed, none showed detectable activity. These results strongly suggest that the mutations found in the patients with PDDR completely abolished 1alpha-hydroxylase activity by replacement of one amino acid residue.  (+info)

A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. (6/164)

Iron-sulfur (Fe/S) cluster-containing proteins catalyze a number of electron transfer and metabolic reactions. The components and molecular mechanisms involved in the assembly of the Fe/S clusters have been identified only partially. In eukaryotes, mitochondria have been proposed to execute a crucial task in the generation of intramitochondrial and extramitochondrial Fe/S proteins. Herein, we identify the essential ferredoxin Yah1p of Saccharomyces cerevisiae mitochondria as a central component of the Fe/S protein biosynthesis machinery. Depletion of Yah1p by regulated gene expression resulted in a 30-fold accumulation of iron within mitochondria, similar to what has been reported for other components involved in Fe/S protein biogenesis. Yah1p was shown to be required for the assembly of Fe/S proteins both inside mitochondria and in the cytosol. Apparently, at least one of the steps of Fe/S cluster biogenesis within mitochondria requires reduction by ferredoxin. Our findings lend support to the idea of a primary function of mitochondria in the biosynthesis of Fe/S proteins outside the organelle. To our knowledge, Yah1p is the first member of the ferredoxin family for which a function in Fe/S cluster formation has been established. A similar role may be predicted for the bacterial homologs that are encoded within iron-sulfur cluster assembly (isc) operons of prokaryotes.  (+info)

Construction and characterization of a catalytic fusion protein system: P-450(11beta)-adrenodoxin reductase-adrenodoxin. (7/164)

Cortisol is an important intermediate for the production of steroidal drugs and can only be synthesized chemically by rather complicated multi-step procedures. The most critical step is the 11beta-hydroxylation of 11-deoxycortisol, which is catalyzed by a mitochondrial enzyme, P-450(11beta). Various fusion constructs of P-450(11beta) with its electron transfer components, adrenodoxin and adrenodoxin reductase, were produced by cDNA manipulation and were successfully expressed in COS-1 cells from which the hydroxylation activities were assayed. It was demonstrated that the fusion protein required both adrenodoxin reductase and adrenodoxin for its activity and was not able to receive electrons from an external source. The fusion protein with all three components had less activity than P-450(11beta) alone, receiving electrons from coexpressed or internal electron transfer components. The activities of the fusion proteins were determined mainly by the fusion sequence. The fusion protein with a sequence of P-450(11beta)-adrenodoxin reductase-adrenodoxin was more active than that of P-450(11beta)-adrenodoxin-adrenodoxin reductase, 1.5- and 3-fold for bovine and human P-450(11beta), respectively. Modification of the linker region by extending the size of the linker with various peptide sequences in the bovine P-450(11beta)-adrenodoxin reductase-adrenodoxin fusion protein indicated that the linker did not have significant effect on the P-450 activity. Taken together, the fusion protein obtained here can serve as a model for the investigation of electron transfer in P-450 systems and is of potential importance for biotechnological steroid production.  (+info)

Dual metabolic pathway of 25-hydroxyvitamin D3 catalyzed by human CYP24. (8/164)

Human 25-hydroxyvitamin D3 (25(OH)D3) 24-hydroxylase (CYP24) cDNA was expressed in Escherichia coli, and its enzymatic and spectral properties were revealed. The reconstituted system containing the membrane fraction prepared from recombinant E. coli cells, adrenodoxin and adrenodoxin reductase was examined for the metabolism of 25(OH)D3, 1alpha,25(OH)2D3 and their related compounds. Human CYP24 demonstrated a remarkable metabolism consisting of both C-23 and C-24 hydroxylation pathways towards both 25(OH)D3 and 1alpha,25(OH)2D3, whereas rat CYP24 showed almost no C-23 hydroxylation pathway [Sakaki, T. Sawada, N. Nonaka, Y. Ohyama, Y. & Inouye, K. (1999) Eur. J. Biochem. 262, 43-48]. HPLC analysis and mass spectrometric analysis revealed that human CYP24 catalyzed all the steps of the C-23 hydroxylation pathway from 25(OH)D3 via 23S, 25(OH)2D3, 23S,25,26(OH)3D3 and 25(OH)D3-26,23-lactol to 25(OH)D3-26, 23-lactone in addition to the C-24 hydroxylation pathway from 25(OH)D3 via 24R,25(OH)2D3, 24-oxo-25(OH)D3, 24-oxo-23S,25(OH)2D3 to 24,25,26,27-tetranor-23(OH)D3. On 1alpha,25(OH)2D3 metabolism, similar results were observed. These results strongly suggest that the single enzyme human CYP24 is greatly responsible for the metabolism of both 25(OH)D3 and 1alpha,25(OH)2D3. We also succeeded in the coexpression of CYP24, adrenodoxin and NADPH-adrenodoxin reductase in E. coli. Addition of 25(OH)D3 to the recombinant E. coli cell culture yielded most of the metabolites in both the C-23 and C-24 hydroxylation pathways. Thus, the E. coli expression system for human CYP24 appears quite useful in predicting the metabolism of vitamin D analogs used as drugs.  (+info)