Ineffective vitamin D synthesis in cats is reversed by an inhibitor of 7-dehydrocholestrol-delta7-reductase. (1/133)

Changes in plasma 25-hydroxyvitamin D (25-OHD) were used as an index of vitamin D status of cats. Plasma 25-OHD concentration of kittens given a purified vitamin D-free diet and exposed to direct summer sun for 15 h/wk declined at a similar rate as kittens given the same diet kept indoors. Similarly, plasma 25-OHD of kittens exposed to ultraviolet (UV) lamps declined at a similar rate as kittens not exposed, and these kittens developed clinical signs of vitamin D deficiency. Eight weaned kittens were given the vitamin D-free purified diet until their plasma concentrations of 25-OHD were < 5 nmol/L. They then had the hair on their backs clipped at weekly intervals and were paired on the basis of skin color and exposed to UV light for 2 h/d. One member of each pair was given an inhibitor of 7-dehydrocholesterol (5, 7-cholestradien-3beta-ol)-delta7-reductase (EC 1.3.1.21) in the diet. Cats receiving the inhibitor had a progressive increase in 25-OHD concentration of plasma with time to 91 +/- 22 nmol/L (mean +/- SEM), whereas cats not receiving the inhibitor had plasma 25-OHD concentrations that were not detectable (P < 0.001). Biopsy samples of skin from cats receiving the inhibitor had more than five times the concentration of 7-dehydrocholesterol (P < 0.001) than the skin of control cats. Low concentration of 7-dehydrocholesterol (presumably due to high activity of the reductase) in the skin of cats is the major impediment to effective vitamin D synthesis. Analysis of wild caught potential prey of cats indicated that these animals could supply adequate vitamin D to meet the requirement of growing kittens.  (+info)

Plasma 25-hydroxyvitamin D in growing kittens is related to dietary intake of cholecalciferol. (2/133)

Vitamin D synthesis by growing kittens exposed to ultraviolet light is ineffective. Concentration of 25-hydroxyvitamin D (25-OHD) in plasma (the most useful index of vitamin D status) was measured in six groups each of seven kittens given a purified diet (12 g calcium and 8 g phosphorus/kg, calculated metabolizable energy = 20 kJ/g) that contained either 0.0, 3.125, 6.25, 12.5, 18.75 or 25 microg of cholecalciferol/kg diet. All kittens received these diets from 9 to 22 wk of age, and the two groups given the 0.0 and 3.125 microg cholecalciferol/kg treatments continued to receive the diets until they were 34 wk old. Total and ionizable calcium and phosphorus in plasma were not affected by treatments. No adverse clinical changes were observed or found on radiographic examination of the kittens at 22 or 34 wk of age. Plasma concentration of 25-OHD was linearly related (r2 = 0.99, P < 0.001) to dietary intake of cholecalciferol. Plasma concentration of 25-OHD in kittens given the diet without added vitamin D was significantly less at 22 wk than at 9 wk, whereas kittens receiving the diet containing 3.125 microg cholecalciferol/kg had significantly higher 25-OHD concentrations at 22 and 34 wk than at 9 wk of age. Kittens given the 6.25 microg cholecalciferol/kg diet had plasma 25-OHD concentrations at 22 wk > 50 nmol/L which is considered replete for humans. An allowance of 6. 25 microg (250 IU) of cholecalciferol/kg diet is suggested to provide a margin of safety.  (+info)

Randomised controlled trial of vitamin D supplementation on bone density and biochemical indices in preterm infants. (3/133)

AIMS: To test the hypothesis that a vitamin D dose of 200 IU/kg, maximum 400 IU/day, given to preterm infants will maintain normal vitamin D status and will result in as high a bone mineral density as that attained with the recommended dose of 960 IU/day. METHODS: Thirty nine infants of fewer than 33 weeks of gestational age were randomly allocated to receive vitamin D 200 IU/kg of body weight/day up to a maximum of 400 IU/day or 960 IU/day until 3 months old. Vitamin D metabolites, bone mineral content and density were determined by dual energy x-ray absorptiometry, and plasma ionised calcium, plasma alkaline phosphatase, and intact parahormone measurements were used to evaluate outcomes. RESULTS: The 25 hydroxy vitamin D concentrations tended to be higher in infants receiving 960 IU/day, but the differences did not reach significance at any age. There was no difference between the infants receiving low or high vitamin D dose in bone mineral content nor in bone mineral density at 3 and 6 months corrected age, even after taking potential risk factors into account. CONCLUSIONS: A vitamin D dose of 200 IU/kg of body weight/day up to a maximum of 400 IU/day maintains normal vitamin D status and as good a bone mineral accretion as the previously recommended higher dose of 960 IU/day. Vitamin D is a potent hormone which affects organs other than bone and should not be given in excess to preterm infants.  (+info)

Serum 25-hydroxyvitamin D concentrations and related dietary factors in peri- and postmenopausal Japanese women. (4/133)

BACKGROUND: Few studies of vitamin D nutrition in Asian populations have been conducted. OBJECTIVE: The objective was to assess 25-hydroxyvitamin D [25(OH)D] concentrations in healthy elderly Japanese women during the winter and to determine whether 25(OH)D concentrations are associated with lifestyle. DESIGN: We investigated 151 women aged 66.5 +/- 6.7 y (f1.gif" BORDER="0"> +/- SD) living in a rural community in February 1999. Serum 25(OH)D and intact parathyroid hormone were measured by using HPLC and an immunoradiometric assay, respectively. Information on lifestyle factors, including sunshine exposure and the consumption of vitamin D-rich foods, was also obtained through an interview. RESULTS: The mean (+/-SD) 25(OH)D concentration was 59.9 +/- 17.0 nmol/L. Vitamin D insufficiencies (<30 nmol/L) were found in 4.6% of the women, a value lower than that found in white populations. No correlation was found between age and 25(OH)D concentrations (r = 0.004, P = 0.957). The 25(OH)D concentration of subjects who consumed fish frequently (>/=4 times/wk) was 10.1 nmol/L higher (P < 0.001) than that of subjects with a moderate consumption of fish (1-3 times/wk). Additionally, those who did not consume eggs had significantly lower 25(OH)D concentrations than did those who consumed eggs >/=1 time/wk (P < 0.05). CONCLUSIONS: : The nutritional status of vitamin D in Japanese populations seems to be better than that in most Western populations. Frequent fish consumption is believed to help maintain adequate concentrations of serum 25(OH)D in elderly Japanese women during the winter.  (+info)

Pseudovitamin D deficiency rickets--a report from the Indian subcontinent. (5/133)

Pseudovitamin D deficiency rickets (also called vitamin D dependent rickets type I) is one of the types of inherited rickets and is caused by a deficit in renal 25-hydroxyvitamin D 1alpha-hydroxylase. This form of rickets has not been reported from the Indian subcontinent. Three patients with this disorder are presented. These patients were all females aged 3-20 years and presented with growth failure and skeletal deformities. All had florid clinical and radiological rickets. The biochemical abnormalities seen included hypocalcaemia, hypophosphataemia, and hyperphosphatasia. All patients had grossly raised 25-hydroxyvitamin D concentrations and markedly low to undetectable concentrations of 1,25-dihydroxyvitamin D. A disturbing feature of this study was the late referral of the patients.  (+info)

Symptomatic rickets in adolescence. (6/133)

AIM: To describe 21 cases of symptomatic rickets in adolescents. METHODS: The setting was a primary and secondary care hospital in Saudi Arabia providing medical care to Saudi Arab company employees and their families. Cases of symptomatic rickets diagnosed between January 1996 and December 1997 in adolescents aged 10 to 15 years were assessed with respect to clinical presentation, biochemical and radiological evaluation, dietary assessment, and estimation of sun exposure. RESULTS: Symptomatic rickets developed in 21 adolescents (20 females), with a prevalence rate of 68 per 100 000 children years. Presentation included carpopedal spasms (n = 12), diffuse limb pains (n = 6), lower limbs deformities (n = 2), and generalised weakness (n = 1). Biochemical findings included hypocalcaemia (n = 19), hypophosphoraemia (n = 9), raised serum alkaline phosphatase (n = 21) and parathormone (n = 7), and reduced 25-hydroxyvitamin D concentrations (n = 7). Radiological studies were suggestive of rickets in only eight children. All children had an inadequate dietary calcium and vitamin D intake. All but one had less than 60 minutes sun exposure per day. CONCLUSION: Even in sunny climates, adolescents, especially females, can be at risk of rickets. Hypocalcaemic tetany and limb pains were the most common presenting symptoms. Radiological evidence was not present in every case.  (+info)

Effects of vitamin D metabolites on intestinal calcium absorption and bone turnover in elderly women. (7/133)

BACKGROUND: The relative importance of vitamin D metabolites in the regulation of gut calcium absorption has not been well studied in elderly women living in an environment with abundant sunlight. OBJECTIVE: The objective was to examine the determinants of active gut calcium absorption ( +/- SD: 42 +/- 11%) after an overnight fast with the use of a low (10 mg) calcium load. DESIGN: One hundred twenty elderly women aged 74.7 +/- 2.6 y underwent an active calcium absorption test with a radioactive calcium tracer, dietary analysis, and measurement of markers of bone turnover and calcium metabolism. RESULTS: The mean serum 25-hydroxyvitamin D [25(OH)D] concentration at the time of the calcium absorption test was 68 +/- 29 nmol/L. Gut calcium absorption was correlated with 25(OH)D but not 1,25-dihydroxyvitamin D (calcitriol), the free calcitriol index, or dietary calcium intake. After adjustment for age, calcitriol concentration, and dietary calcium intake, the significant determinant of fractional calcium absorption was the 25(OH)D concentration (r = 0.34, P = 0.001). When body weight was included in the regression, both 25(OH)D (beta = 1.20 x 10(-3)) and calcitriol (beta = 1.00 x 10(-3)) were significantly correlated with calcium absorption. Despite the strong relation between 25(OH)D and gut calcium absorption, there was no relation with other aspects of bone turnover or calcium metabolism. CONCLUSION: These data suggest that at low calcium loads, 25(OH)D is a more important determinant of gut calcium absorption than is calcitriol in elderly women exposed to abundant sunlight, but that this relation has little effect on overall calcium metabolism.  (+info)

The effect of conventional vitamin D(2) supplementation on serum 25(OH)D concentration is weak among peripubertal Finnish girls: a 3-y prospective study. (8/133)

OBJECTIVES: To study the effect of vitamin D supplementation and the impact of summer season on serum 25-hydroxyvitamin D (S-25(OH)D) in Finnish 9-15-y-old girls. DESIGN: Three-year follow-up study with vitamin D(2) supplementation using D(2) 10 microg daily from October to January for the first and from October to February for the second winter as well as 20 microg daily from October to March for the third winter. SETTING: Paavo Nurmi Centre, University of Turku, Turku, Finland. SUBJECTS: A total of 171 female volunteers aged 9-15 y. METHODS: Vitamin D and calcium intakes were estimated by a semi-quantitative food frequency questionnaire (FFQ). S-25(OH)D was measured by radioimmunoassay. RESULTS: The median daily dietary intakes of vitamin D and calcium were 3.8 microg (interquartile range (IQR) 2.7-5.0) and 1451 mg (IQR 1196-1812), respectively, over 3 y. The prevalence of severe hypovitaminosis D (S-25(OH)D<20 nmol/l) was 14% and of moderate hypovitaminosis D (20 nmol/l < or = S-25(OH)D < or = 37.5 nmol/l) 75% at baseline in winter. None of the participants had severe hypovitaminosis D in summer. The effect of 10 microg of D(2) daily was insufficient to raise S-25(OH)D from baseline. The daily supplementation of 20 microg of D(2) increased S-25(OH)D significantly in wintertime compared with the non-supplement users (to 45.5 vs 31.8 nmol/l; P<0.001). None of the subjects with vitamin D(2) supplementation approximately 20 microg daily had severe hypovitaminosis D; however, 38% of those participants had moderate hypovitaminosis D at 36 months. Sun exposure in summer raised mean S-25(OH)D to 62.0 nmol/l. Both the daily supplementation of approximately 20 microg of D(2) and summer sunlight exposure had more effect on those who had severe hypovitaminosis than those who had a normal vitamin D status (increase of 24.2 vs 0.9 nmol/l (P<0.001), and 38.8 vs 18.2 nmol/l (P<0.001), respectively). CONCLUSION: Vitamin D supplementation daily with 20 microg is needed to prevent hypovitaminosis D in peripubertal Finnish girls in winter. Sunlight exposure in summer is more effective than approximately 20 microg of D(2) supplementation daily in winter to raise S-25(OH)D. Both the daily supplementation with 20 microg of D(2) and summertime sunlight exposure had more effect on those who had severe hypovitaminosis D than those who had a normal vitamin D status. SPONSORSHIP: Supported by the Yrjo Jahnsson Foundation and the Medical Research Foundation of the Turku University Central Hospital.  (+info)