(1/562) Long term orexigenic effect of a novel melanocortin 4 receptor selective antagonist.

1. We designed and synthesized several novel cyclic MSH analogues and tested their affinities for cells expressing the MC1, MC3, MC4 and MC5 receptors. 2. One of the substances HS028 (cyclic [AcCys11, dichloro-D-phenylalanine14, Cys18, Asp-NH2(22)]-beta-MSH11-22) showed high affinity (Ki of 0.95nM) and high (80 fold) MC4 receptor selectivity over the MC3 receptor. HS028 thus shows both higher affinity and higher selectivity for the MC4 receptor compared to the earlier first described MC4 receptor selective substance HS014. 3. HS028 antagonised a alpha-MSH induced increase in cyclic AMP production in transfected cells expressing the MC3 and MC4 receptors, whereas it seemed to be a partial agonist for the MC1 and MC5 receptors. 4. Chronic intracerebroventricularly (i.c.v.) administration of HS028 by osmotic minipumps significantly increased both food intake and body weight in a dose dependent manner without tachyphylaxis for a period of 7 days. 5. This is the first report demonstrating that an MC4 receptor antagonist can increase food intake and body weight during chronic administration providing further evidence that the MC4 receptor is an important mediator of long term weight homeostasis.  (+info)

(2/562) Role of the CNS melanocortin system in the response to overfeeding.

The voluntary suppression of food intake that accompanies involuntary overfeeding is an effective regulatory response to positive energy balance. Because the pro-opiomelanocortin (POMC)-derived melanocortin system in the hypothalamus promotes anorexia and weight loss and is an important mediator of energy regulation, we hypothesized that it may contribute to the hypophagic response to overfeeding. Two groups of rats were overfed to 105 and 116% of control body weight via a gastric catheter. In the first group, in situ hybridization was used to measure POMC gene expression in the rostral arcuate (ARC). Overfeeding increased POMC mRNA in the ARC by 180% relative to levels in control rats. For rats in the second group, the overfeeding was stopped, and they were infused intracerebroventricularly with SHU9119 (SHU), a melanocortin (MC) antagonist at the MC3 and MC4 receptor, or vehicle. Although SHU (0.1 nmol) had no effect on food intake of control rats, intake of overfed rats increased by 265% relative to CSF-treated controls. This complete reversal of regulatory hypophagia not only maintained but actually increased the already elevated weight of overfed rats, whereas CSF-treated overfed rats lost weight. These results indicate that CNS MCs mediate hypophagic signaling in response to involuntary overfeeding and support the hypothesis that MCs are important in the central control of energy homeostasis.  (+info)

(3/562) Role of central melanocortins in endotoxin-induced anorexia.

Inflammation and microbial infection produce symptoms, including fever, anorexia, and hypoactivity, that are thought to be mediated by endogenous proinflammatory cytokines. Melanocortins are known to act centrally to suppress effects on fever and other sequelae of proinflammatory cytokine actions in the central nervous system, but the roles of melanocortins in anorexia and hypoactivity occurring during the acute phase response are unknown. The present study was designed to determine the effects of exogenous and endogenous alpha-melanocyte stimulating hormone (alpha-MSH) on lipopolysaccharide (LPS)-induced anorexia in relation to their effects on fever. Rats were fasted overnight to promote feeding behavior, then injected intraperitoneally with LPS (100 micrograms/kg ip), followed 30 min later by intracerebroventricular injection of either alpha-MSH or the melanocortin receptor subtype 3/subtype 4 (MC3-R/MC4-R) antagonist SHU-9119. Food intake, locomotor activity, and body temperature (Tb) were monitored during the ensuing 24-h period. Each of two intracerebroventricular doses of alpha-MSH (30 and 300 ng) potentiated the suppressive effects of LPS on food intake and locomotion, despite the fact that the higher dose alleviated LPS-induced fever. In control rats that were not treated with LPS, only the higher dose of alpha-MSH significantly inhibited food intake, and Tb and locomotor activity were unaffected. To assess the roles of endogenous central melanocortins, LPS-treated rats received intracerebroventricular SHU-9119 (200 ng). Central MC3-R/MC4-R blockade did not affect Tb or food intake in the absence of LPS treatment, but it reversed the LPS-induced reduction in 24-h food intake and increased LPS-induced fever without altering the LPS-induced suppression of locomotion. Taken together, the results suggest that exogenous and endogenous melanocortins acting centrally exert divergent influences on different aspects of the acute phase response, suppressing LPS-induced fever but contributing to LPS-induced anorexia and hypoactivity.  (+info)

(4/562) First synthesis of a fully active spin-labeled peptide hormone.

For the first time in the electron spin resonance (ESR) and peptide synthesis fields, a fully active spin-labeled peptide hormone was reported. The ESR spectra of this alpha-melanocyte stimulating hormone (alpha-MSH) analogue (acetyl-Toac0-alpha-MSH) where Toac is the paramagnetic amino acid probe 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid, suggested a pH-independent conformation and a more restricted movement comparatively to the free Toac. Owing to its equivalent biological potency in a skin pigmentation assay as compared to the native alpha-MSH and its unique characteristic (paramagnetic, naturally fluorescent and fully active), this analogue is of great potential for investigation of relevant physiological roles reported for alpha-MSH.  (+info)

(5/562) alpha-MSH and its receptors in regulation of tumor necrosis factor-alpha production by human monocyte/macrophages.

The hypothesis that macrophages contain an autocrine circuit based on melanocortin [ACTH and alpha-melanocyte-stimulating hormone (alpha-MSH)] peptides has major implications for neuroimmunomodulation research and inflammation therapy. To test this hypothesis, cells of the THP-1 human monocyte/macrophage line were stimulated with lipopolysaccharide (LPS) in the presence and absence of alpha-MSH. The inflammatory cytokine tumor necrosis factor (TNF)-alpha was inhibited in relation to alpha-MSH concentration. Similar inhibitory effects on TNF-alpha were observed with ACTH peptides that contain the alpha-MSH amino acid sequence and act on melanocortin receptors. Nuclease protection assays indicated that expression of the human melanocortin-1 receptor subtype (hMC-1R) occurs in THP-1 cells; Southern blots of RT-PCR product revealed that additional subtypes, hMC-3R and hMC-5R, also occur. Incubation of resting macrophages with antibody to hMC-1R increased TNF-alpha concentration; the antibody also markedly reduced the inhibitory influence of alpha-MSH on TNF-alpha in macrophages treated with LPS. These results in cells known to produce alpha-MSH at rest and to increase secretion of the peptide when challenged are consistent with an endogenous regulatory circuit based on melanocortin peptides and their receptors. Targeting of this neuroimmunomodulatory circuit in inflammatory diseases in which myelomonocytic cells are prominent should be beneficial.  (+info)

(6/562) STZ-induced diabetes decreases and insulin normalizes POMC mRNA in arcuate nucleus and pituitary in rats.

Effects of streptozotocin (STZ)-induced diabetes and insulin on opioid peptide gene expression were examined in rats. In experiment 1, three groups were administered STZ (75 mg/kg ip single injection). Two groups were killed at either 2 or 4 wk. In the third group, insulin treatment (7.0 IU/kg x 1 day for 3 wk) was initiated 1 wk after STZ injection. STZ induced hyperphagia and reduced weight gain. Insulin decreased food intake and increased body weight relative to diabetes. Proopiomelanocortin (POMC) mRNA in arcuate nucleus (Arc) and pituitary decreased in diabetes and normalized after insulin treatment. Prodynorphin (proDyn) mRNA increased in diabetes and normalized in the pituitary after insulin but not in the Arc. Diabetes did not alter proenkephalin (proEnk) expression in the Arc or pituitary, nor dynorphin A1-17 or beta-endorphin in paraventricular nucleus (PVN). alpha-Melanocyte-stimulating hormone (alpha-MSH) peptide levels were decreased in the PVN and normalized following insulin treatment. Diabetes increased Arc neuropeptide Y mRNA, and insulin suppressed this increase. In experiment 2, insulin (2.5 IU/kg sc) daily for 1 wk in normal rats increased Arc POMC mRNA, but not proDyn and proEnk mRNA. These results suggest that Arc POMC expression and PVN alpha-MSH peptide levels decrease in diabetes. Also, insulin may influence Arc and pituitary POMC activity in neurons that regulate energy metabolism.  (+info)

(7/562) Down-regulation of melanocortin receptor signaling mediated by the amino terminus of Agouti protein in Xenopus melanophores.

Agouti protein and Agouti-related protein (Agrp) regulate pigmentation and body weight, respectively, by antagonizing melanocortin receptor signaling. A carboxyl-terminal fragment of Agouti protein, Ser73-Cys131, is sufficient for melanocortin receptor antagonism, but Western blot analysis of skin extracts reveals that the electrophoretic mobility of native Agouti protein corresponds to the mature full-length form, His23-Cys131. To investigate the potential role of the amino-terminal residues, we compared the function of full-length and carboxyl-terminal fragments of Agrp and Agouti protein in a sensitive bioassay based on pigment dispersion in Xenopus melanophores. We find that carboxyl-terminal Agouti protein, and all forms of Agrp tested, act solely by competitive antagonism of melanocortin action. However, full-length Agouti protein acts by an additional mechanism that is time- and temperature-dependent, depresses maximal levels of pigment dispersion, and is therefore likely to be mediated by receptor down-regulation. Apparent down-regulation is not observed for a mixture of amino-terminal and carboxyl-terminal fragments. We propose that the phenotypic effects of Agouti in vivo represent a bipartite mechanism: competitive antagonism of agonist binding by the carboxyl-terminal portion of Agouti protein and down-regulation of melanocortin receptor signaling by an unknown mechanism that requires residues in the amino terminus of the Agouti protein.  (+info)

(8/562) Conformation of the core sequence in melanocortin peptides directs selectivity for the melanocortin MC3 and MC4 receptors.

Melanocortin peptides regulate a variety of physiological processes. Five melanocortin receptors (MC-R) have been cloned and the MC3R and MC4R are the main brain MC receptors. The aim of this study was to identify structural requirements in both ligand and receptor that determine gamma-melanocyte-stimulating hormone (MSH) selectivity for the MC3R versus the MC4R. Substitution of Asp10 in [Nle4]Lys-gamma2-MSH for Gly10 from [Nle4]alpha-MSH, increased both activity and affinity for the MC4R while the MC3R remained unaffected. Analysis of chimeric MC3R/MC4Rs and mutant MC4Rs showed that Tyr268 of the MC4R mainly determined the low affinity for [Nle4]Lys-gamma2-MSH. The data demonstrate that Asp10 determines selectivity for the MC3R, however, not through direct side chain interactions, but probably by influencing how the melanocortin core sequence is presented to the receptor-binding pocket. This is supported by mutagenesis of Tyr268 to Ile in the MC4R which increased affinity and activity for [Nle4]Lys-gamma2-MSH, but decreased affinity for two peptides with constrained cyclic structure of the melanocortin core sequence, MT-II and [D-Tyr4]MT-II, that also displayed lower affinity for the MC3R. This study provides a general concept for peptide receptor selectivity, in which the major determinant for a selective receptor interaction is the conformational presentation of the core sequence in related peptides to the receptor-binding pocket.  (+info)