Infection-associated decline of cape buffalo blood catalase augments serum trypanocidal activity. (1/122)

Clearance of trypanosomes from the blood of infected Cape buffalo was associated with the development of two responses: (i) complement-dependent and clone-specific lytic activity and (ii) complement-independent trypanocidal activity that was not restricted by trypanosome clone or species. This latter activity was mediated by H2O2 and required the presence of xanthine oxidase in serum but not the addition of purine substrates. Expression of the xanthine oxidase-dependent trypanocidal activity in Cape buffalo serum was coincident with, and required, a decline in its H2O2 catabolic activity. The H2O2 catabolic activity of Cape buffalo serum was due solely to catalase and declined by eightfold around the time that trypanosomes were cleared from the blood, accompanied by a fivefold drop in erythrocyte-associated catalase activity. The Cape buffalo did not develop subsequent parasitemic waves. Clearance of parasitemia in similarly infected cattle was also associated with development of trypanosome clone-specific lytic activity, but not with the acquisition of H2O2-dependent trypanocidal activity in serum, and the cattle supported recurring parasitemia. The lack of trypanocidal activity in pre- and postinfection cattle sera was due to their low content of xanthine oxidase and sustained catalase activity. These data strongly suggest that an infection-induced serum oxidative response, the efficacy of which is amplified by a decline in blood catalase, contributes to suppression of recurring parasitemia in Cape buffalo.  (+info)

Aggregation and distribution of strains in microparasites. (2/122)

Recent research has shown that many parasite populations are made up of a number of epidemiologically distinct strains or genotypes. The implications of strain structure or genetic diversity for parasite population dynamics are still uncertain, partly because there is no coherent framework for the interpretation of field data. Here, we present an analysis of four published data sets for vector-borne microparasite infections where strains or genotypes have been distinguished: serotypes of African horse sickness (AHS) in zebra; types of Nannomonas trypanosomes in tsetse flies; parasite-induced erythrocyte surface antigen (PIESA) based isolates of Plasmodium falciparum malaria in humans, and the merozoite surface protein 2 gene (MSP-2) alleles of P. falciparum in humans and in anopheline mosquitoes. For each data set we consider the distribution of strains or types among hosts and any pairwise associations between strains or types. Where host age data are available we also compare age-prevalence relationships and estimates of the force of infection. Multiple infections of hosts are common and for most data sets infections have an aggregated distribution among hosts with a tendency towards positive associations between certain strains or types. These patterns could result from interactions (facilitation) between strains or types, or they could reflect patterns of contact between hosts and vectors. We use a mathematical model to illustrate the impact of host-vector contact patterns, finding that even if contact is random there may still be significant aggregation in parasite distributions. This effect is enhanced if there is non-random contact or other heterogeneities between hosts, vectors or parasites. In practice, different strains or types also have different forces of infection. We anticipate that aggregated distributions and positive associations between microparasite strains or types will be extremely common.  (+info)

The structure-function relationship of functionally distinct but structurally similar hexose transporters from Trypanosoma congolense. (3/122)

We have previously characterized, in Trypanosoma brucei, a multigene family encoding two developmentally regulated glucose transporters that are 80% identical at the amino-acid level. We report here the characterization of the homologous glucose transporters (TcoHT1 and TcoHT2) in Trypanosoma congolense, an African trypanosome responsible for disease in domestic animals. Both TcoHT isoforms, which are 92.4% identical, are encoded by a single cluster of genes containing two copies of TcoHT1 and three copies of TcoHT2 arranged alternately. Northern blot analysis revealed that TcoHT2 is expressed in all of the adaptive forms, while mRNA encoding TcoHT1 is only present in the metacyclic and bloodstream forms of T. congolense. When transfected with the TcoHT2 gene, Chinese Hamster Ovary cells express a hexose transporter with properties similar to those of the T. congolense procyclic forms (Km D-glucose = 41 microM versus 64 microM). In contrast to TcoHT2, TcoHT1 expressed in the Chinese hamster ovary cells appeared to be a relatively low affinity glucose transporter (Ki D-glucose = 0.8 mM). To determine the region(s) involved in the different apparent affinities for glucose, a chimera analysis was undertaken on the TcoHT isoforms. This study shows that amino-acid residues important for D-glucose recognition are located in the central region (between transmembrane domains 3 and 7) and in the C-terminal intracellular domain of TcoHT2. Site directed mutagenesis identified Ser193 located within transmembrane helix 4 as a key residue in relaxing the apparent affinity of TcoHT1 for glucose.  (+info)

Novel species specific antigens of trypanosoma congolense and their different localization among life-cycle stages. (4/122)

Seven monoclonal antibodies (mAbs) were raised against Trypanosoma congolense procyclic form (PCF). Localization of the antigens recognized by the mAbs was determined in bloodstream form (BSF), PCF, epimastigote form (EMF) and metacyclic form (MCF) by confocal laser scanning microscopy (CLSM). Two mAbs (10F9 and 20H12) showed different fluorescent patterns among different life-cycle stages of the parasite. The 10F9 recognized a 76 kDa antigen of all life-cycle stages of the parasite and the antigen localization corresponded with that of a mitochondrion. While the 20H12 recognized 119 and 122 kDa antigens of all the life-cycle stages and the antigen localization corresponded with a flagellum in BSF and MCF, tip of a flagellum in PCF, and part of cytoplasm in EMF. Moreover, the 20H12 did not react to T. brucei gambiense, T. b. rhodesiense and T. evansi antigens in both CLSM and immunoblotting. Therefore, the antigens recognized by the 20H12 seem to be T. congolense specific. Although, further studies will be required for a full characterization of the T. congolense specific 119 and 122 kDa antigens, the mAb 20H12 and the specific antigens may be useful in not only establishment of T. congolense specific diagnosis methods but also studies on molecular mechanisms regulating differentiation of the parasite during life-cycle.  (+info)

GPI-anchored proteins: now you see 'em, now you don't. (5/122)

Many cell surface proteins are attached to membranes via covalent glycosylphosphatidylinositol (GPI) anchors that are posttranslationally linked to the carboxy-terminus of the protein. Removal of the GPI lipid moieties by enzymes such as GPI-specific phospholipases or by chemical treatments generates a soluble form of the protein that no longer associates with lipid bilayers. We have found that the removal of lipid moieties from the anchor can also have a second, unexpected effect on the antigenicity of a variety of GPI-anchored surface molecules, suggesting that they undergo major conformational changes. Several antibodies raised against GPI-anchored proteins from protozoa and mammalian cells were no longer capable of binding the corresponding antigens once the lipid moieties had been removed. Conversely, antibodies raised against soluble (delipidated) forms reacted poorly with intact GPI-anchored proteins, but showed enhanced binding after treatment with phospholipases. In the light of these findings, we have reevaluated a number of publications on GPI-anchored proteins. Many of the results are best explained by lipid-dependent changes in antigenicity, indicating this might be a widespread phenomenon. Since many pathogen surface proteins are GPI-anchored, researchers should be aware that the presence or absence of the GPI lipid moieties may have a major impact on the host immune response to infection or vaccination.  (+info)

Subsite specificity of trypanosomal cathepsin L-like cysteine proteases. Probing the S2 pocket with phenylalanine-derived amino acids. (6/122)

The S2 subsite of mammalian cysteine proteinases of the papain family is essential for specificity. Among natural amino acids, all these enzymes prefer bulky hydrophobic residues such as phenylalanine at P2. This holds true for their trypanosomal counterparts: cruzain from Trypanosoma cruzi and congopain from T. congolense. A detailed analysis of the S2 specificity of parasitic proteases was performed to gain information that might be of interest for the design of more selective pseudopeptidyl inhibitors. Nonproteogenic phenylalanyl analogs (Xaa) have been introduced into position P2 of fluorogenic substrates dansyl-Xaa-Arg-Ala-Pro-Trp, and their kinetic constants (Km, kcat/Km) have been determined with congopain and cruzain, and related host cathepsins B and L. Trypanosomal cysteine proteases are poorly stereoselective towards D/L-Phe, the inversion of chirality modifying the efficiency of the reaction but not the Km. Congopain binds cyclohexylalanine better than aromatic Phe derivatives. Another characteristic feature of congopain compared to cruzain and cathepsins B and L was that it could accomodate a phenylglycyl residue (kcat/Km = 1300 mM-1.s-1), while lengthening of the side chain by a methylene group only slightly impaired the specificity constant towards trypanosomal cysteine proteases. Mono- and di-halogenation or nitration of Phe did not affect Km for cathepsin L-like enzymes, but the presence of constrained Phe derivatives prevented a correct fitting into the S2 subsite. A model of congopain has been built to study the fit of Phe analogs within the S2 pocket. Phe analogs adopted a positioning within the S2 pocket similar to that of the Tyr of the cruzain/Z-Tyr-Ala-fluoromethylketone complex. However, cyclohexylalanine has an energetically favorable chair-like conformation and can penetrate deeper into the subsite. Fitting of modeled Phe analogs were in good agreement with kinetic parameters. Furthermore, a linear relationship could be established with logP, supporting the suggestion that fitting into the S2 pocket of trypanosomal cysteine proteases depends on the hydrophobicity of Phe analogs.  (+info)

Enhancing effects of anti-CD40 treatment on the immune response of SCID-bovine mice to Trypanosoma congolense infection. (7/122)

African trypansosomes are tsetse-transmitted parasites of chief importance in causing disease in livestock in regions of sub-Saharan Africa. Previous studies have demonstrated that certain breeds of cattle are relatively resistant to infection with trypanosomes, and others are more susceptible. Because of its extracellular location, the humoral branch of the immune system dominates the response against Trypanosoma congolense. In the following study, we describe the humoral immune response generated against T. congolense in SCID mice reconstituted with a bovine immune system (SCID-bo). SCID-bo mice infected with T. congolense were treated with an agonistic anti-CD40 antibody and monitored for the development of parasitemia and survival. Anti-CD40 antibody administration resulted in enhanced survival compared with mice receiving the isotype control. In addition, we demonstrate that the majority of bovine IgM+ B cells in SCID-bo mice expresses CD5, consistent with a neonatal phenotype. It is interesting that the percentage of bovine CD5+ B cells in the peripheral blood of infected SCID-bo mice was increased following anti-CD40 treatment. Immunohistochemical staining also indicated increased numbers of Ig+ cells in the spleens of anti-CD40-treated mice. Consistent with previous studies demonstrating high IL-10 production during high parasitemia levels in mice and cattle, abundant IL-10 mRNA message was detected in the spleens and peripheral blood of T. congolense-infected SCID-bo mice during periods of high parasitemia. In addition, although detected in plasma when parasites were absent or low in number, bovine antibody was undetectable during high parasitemia. However, Berenil treatment allowed for the detection of VSG-specific IgG 14 days postinfection in T. congolense-infected SCID-bo mice. Overall, the data indicate that survival of trypanosome-infected SCID-bo mice is prolonged when an agonistic antibody against bovine CD40 (ILA156) is administered. Thus, stimulation of B cells and/or other cell types through CD40 afforded SCID-bo mice a slight degree of protection during T. congolense infection.  (+info)

Recombinant tumor necrosis factor alpha does not inhibit the growth of African trypanosomes in axenic cultures. (8/122)

Mice whose tumor necrosis factor alpha (TNF-alpha) genes were disrupted developed higher levels of parasitemia than wild-type mice following infection with Trypanosoma congolense IL1180 or T. brucei brucei GUTat3.1, confirming the results of earlier studies. To determine whether TNF-alpha directly affects the growth of these and other bloodstream forms of African trypanosomes, we studied the effects of recombinant mouse, human, and bovine TNF-alpha on the growth of two isolates of T. congolense, IL1180 and IL3338, and two isolates of T. brucei brucei, GUTat3.1 and ILTat1.1, under axenic culture conditions. The preparations of recombinant TNF-alpha used were biologically active as determined by their capacity to kill L929 cells. Of five recombinant TNF-alpha lots tested, one lot of mouse TNF-alpha inhibited the growth of both isolates of T. brucei brucei and one lot of bovine TNF-alpha inhibited the growth of T. brucei brucei ILTat1.1 but only at very high concentrations and without causing detectable killing of the parasites. The other lots of mouse recombinant TNF-alpha, as well as human TNF-alpha, did not affect the growth of any of the test trypanosomes even at maximal concentrations that could be attained in the culture systems (3,000 to 15,000 U of TNF-alpha/ml of medium). These results suggest that exogenously added recombinant TNF-alpha generally does not inhibit the growth of African trypanosomes under the culture conditions we used. The impact of TNF-alpha on trypanosome parasitemia may be indirect, at least with respect to the four strains of trypanosomes reported here.  (+info)