The isolation and partial characterization of the serum lipoproteins and apolipoproteins of the rainbow trout. (1/747)

1. VLD (very-low-density), LD (low-density) and HD (high-density) lipoproteins were isolated from the serum of trout (Salmo gairdneri Richardson). 2. Each lipoprotein class resembled that of the human in immunological reactivity, electrophoretic behaviour and appearance in the electron microscope. Trout LD lipoprotein, however, was of greater density than human LD lipoprotein. 3. The trout lipoproteins have lipid compositions which are similar to those of the corresponding human components, except for their high contents of long-chain unsaturated fatty acids. 4. HD and LD lipoproteins were immunologically non-identical, whereas LD lipoproteins possessed antigenic determinants in common with VLD lipoproteins. 5. VLD and HD lipoproteins each contained at least seven different apoproteins, whereas LD liprotein was composed largely of a single apoprotein which resembled human apolipoprotein B. 6. At least one, and possibly three, apoprotein of trout HD lipoprotein showed features which resemble human apoprotein A-1.7. The broad similarity between the trout and human lipoprotein systems suggests that both arose from common ancestral genes early in evolutionary history.  (+info)

Estimating the effective number of breeders from heterozygote excess in progeny. (2/747)

The heterozygote-excess method is a recently published method for estimating the effective population size (Ne). It is based on the following principle: When the effective number of breeders (Neb) in a population is small, the allele frequencies will (by chance) be different in males and females, which causes an excess of heterozygotes in the progeny with respect to Hardy-Weinberg equilibrium expectations. We evaluate the accuracy and precision of the heterozygote-excess method using empirical and simulated data sets from polygamous, polygynous, and monogamous mating systems and by using realistic sample sizes of individuals (15-120) and loci (5-30) with varying levels of polymorphism. The method gave nearly unbiased estimates of Neb under all three mating systems. However, the confidence intervals on the point estimates of Neb were sufficiently small (and hence the heterozygote-excess method useful) only in polygamous and polygynous populations that were produced by <10 effective breeders, unless samples included > approximately 60 individuals and 20 multiallelic loci.  (+info)

The hatching gland cells of trout embryos: characterisation of N- and O-linked oligosaccharides. (3/747)

A histochemical, light and electron microscopy study of the hatching gland cells (HGCs) in incubated 50-d-old trout embryos is reported. The distribution of carbohydrate residues in the glycoconjugates of these cells was studied by means of a battery of 13 different lectins conjugated with horseradish peroxidase (PNA, ConA, LCA, WGA, SBA, UEA-I, HPA, DBA) or digoxigenin (DSA, MAA, AAA, SNA, GNA). Identification of N- and O-linked oligosaccharides in HGCs was performed by application of both chemical and enzymatic treatments. Present results suggest that HGCs are seromucous cells which store both high choriolytic enzyme (HCE) and low choriolytic enzyme (LCE), and that their cytoplasmic granules, endoplasmic reticulum and Golgi complex contain additional sialic acid-rich glycoproteins. The negative charge of these glycoproteins might be responsible for the rapid expansion of mucin to form a highly hydrated gel, which would facilite the action of these enzymes in programmed cell death and might play a major role during the morphogenic events.  (+info)

Fish macrophages express a cyclo-oxygenase-2 homologue after activation. (4/747)

In mammals, the increased generation of prostaglandins (PG) during the onset of inflammatory responses and activation of immune cell types has been attributed to the induction of a novel cyclo-oxygenase (COX) isoform, termed COX-2, which is distinct from the well-characterized constitutive activity (COX-1). Goldfish (Carassius auratus) macrophages exposed to bacterial lipopolysaccharide and leucocyte-derived macrophage-activating factor(s) showed a significant increase in the generation of the major COX product, PGE2, within the first 6 h of stimulation. The selective COX-2 inhibitor, NS398, inhibited this elevated generation of PGE, whereas the basal level of this product synthesized by unstimulated macrophages was unaffected by such exposure. PGE generation by goldfish macrophages was similarly inhibited by the glucocorticoid, dexamethasone, and an inhibitor of protein synthesis, cycloheximide, suggesting that this stimulation may be due to an inducible enzyme equivalent to mammalian COX-2. The complete coding sequence of rainbow trout (Oncorhynchus mykiss) COX-2 was obtained by PCR. The gene contains a 61 bp 5'-untranslated region (UTR), a 1821 bp open reading frame and a 771 bp 3'UTR containing multiple copies of an mRNA instability motif (ATTTA). The predicted translation product had high homology to known mammalian and chicken COX-2 (83-84%) and COX-1 (77%) sequences. Reverse-transcriptase PCR with cDNA from control and bacterially challenged fish revealed that trout COX-2 expression was not constitutive but could be induced. Overall, these studies show for the first time that the inducible isoform of COX has a long evolutionary history, probably dating back to the evolution of fish over 500 million years ago.  (+info)

Endocrine control of Na+,K+-ATPase and chloride cell development in brown trout (Salmo trutta): interaction of insulin-like growth factor-I with prolactin and growth hormone. (5/747)

A 2-factorial (3x3) injection experiment was used to investigate the effect and interaction between different hormones on the initial phase of seawater (SW) acclimation in brown trout (Salmo trutta). Each fish was given 4 injections on alternate days in freshwater (FW). Factor 1 was either saline, 2 micrograms ovine prolactin (oPRL)/g, or 2 micrograms ovine growth hormone (oGH)/g. Factor 2 was either 0, 0. 01, or 0.1 mirograms recombinant human insulin-like growth factor-I (rhIGF-I)/g. In each of the 9 treatment groups, half of the fish were subjected to a 48-h SW-challenge test, and the remaining fish were sham-transferred to FW one day after the last injection. Hypo-osmoregulatory performance was increased by GH and impaired by PRL treatment as judged by changes in plasma osmolality, [Na+], [Cl-], total [Mg] and muscle water content (MWC) after SW transfer. IGF-I reduced plasma osmolality after transfer to SW but had no effect on plasma total [Mg] or MWC. The effects of the two factors on plasma osmolality, [Na+], [Cl-], and MWC were additive. In sham-transferred fish, GH and IGF-I, alone and in combination, stimulated Na+,K+-ATPase alpha-subunit mRNA (alpha-mRNA) content in the gill. This was paralleled by an overall increase in gill Na+, K+-ATPase activity in fish treated with 0.01 micrograms IGF-I/g. Simultaneous administration of PRL completely inhibited the increase in gill alpha-mRNA observed in the IGF-I-injected groups. Combination of GH and IGF-I did not further affect the alpha-mRNA level relative to the single hormone-injected groups. There was an overall decrease in Na+,K+-ATPase activity in pyloric caeca and middle intestine by the low dose and both doses of IGF-I respectively. No effect was observed in the posterior intestine. PRL and GH treatments did not affect enzyme activity in any intestinal segment. Both doses of IGF-I increased Na+,K+-ATPase-immunoreactive (NKIR) cell density in gill primary filaments. PRL and GH had no effect on primary filament NKIR cell density. GH and both doses of IGF-I reduced secondary lamellar NKIR cell density, whereas PRL had no effect. The main conclusion is that IGF-I and GH induce an overall redistribution of NKIR cells away from the secondary lamella onto the primary filament of FWacclimated trout. This is associated with an overall increased alpha-mRNA level in the gill, which may reflect an increased expression within individual NKIR cells in the primary filament. PRL completely abolished the IGF-I stimulation of alpha-mRNA levels, suggesting a desensitisation of the gill tissue to IGF-I, which may explain the overall anti-SW adaptive effect of PRL.  (+info)

Na(+)-K(+) pump and metabolic activities of trout erythrocytes during anoxia. (6/747)

Metabolic activity in the red blood cells of brown trout was monitored under conditions of oxygen depletion and chemically induced anoxia. Although metabolic activity was reduced during anoxia to one-third of the normoxic value, these cells maintained their ATP contents stable and were viable for hours in the absence of oxygen. In addition, Na(+)-K(+) pump activity was not down-regulated when metabolic activity was reduced during anoxia. The compatibility of this finding with energy equilibrium and ion homeostasis was investigated.  (+info)

Energy cost of NaCl transport in isolated gills of cutthroat trout. (7/747)

Few studies have made direct estimates of the energy required for ion transport in gills of freshwater (FW) and seawater (SW) fish. Oxygen consumption was measured in excised gill tissue of FW-adapted cutthroat trout (Oncorhynchus clarki clarki) to estimate the energy cost of NaCl transport in that osmoregulatory organ. Ouabain (0.5 mM) and bafilomycin A1 (1 microM) were used to inhibit the Na+-K+ and H+ pumps, respectively. Both inhibitors significantly decreased gill tissue oxygen consumption, accounting for 37% of total tissue respiration. On a whole mass basis, the cost of NaCl uptake in the FW trout gill was estimated to be 1.8% of whole animal oxygen uptake. An isolated, saline-perfused gill arch preparation was also used to compare gill energetics in FW- and SW-adapted trout. The oxygen consumption of FW gills was significantly (33%) higher than SW gills. On a whole animal basis, total gill oxygen consumption in FW and SW trout accounted for 3.9 and 2.4% of resting metabolic rate, respectively. The results of both experiments suggest that the energy cost of NaCl transport in FW and SW trout gills represents a relatively small (<4%) portion of the animal's total energy budget.  (+info)

Latencies and discharge patterns of color-opponent neurons in the rainbow trout optic tectum. (8/747)

Although color-opponent neurons appear to subserve color vision, precisely how these cells encode hue is still not clear. Single-unit, extracellular recordings from the rainbow trout optic tectum were made in order to examine the possible role of action potential timing in coding chromatic stimuli. We found that color-opponent units can exhibit differences in response latency which are a function of wavelength and response sign, with the OFF response exhibiting the shorter response latency. We also found that units often responded with spike bursts characterized by early and late spikes separated by a silent period, with the relative proportion of early and late spikes varying as a function of wavelength. This type of discharge pattern appears to be a result of inhibitory, color-opponent processes. We suggest that complete inhibition of early spikes may be the mechanism underlying the observed latency differences. These findings suggest a role for action potential patterning in coding chromatic stimuli.  (+info)