Elevated growth of Saccharomyces cerevisiae ATH1 null mutants on glucose is an artifact of nonmatching auxotrophies of mutant and reference strains. (1/186)

Yeast strains disrupted for ATH1, which encodes vacuolar acid trehalase, have been reported to grow to higher cell densities than reference strains. We showed that the increase in cell density is due to the URA3 gene introduced as a part of the disruption and concluded that the misinterpretation is a result of not using a control strain with matching auxotrophic markers.  (+info)

Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial Baker's yeast. (2/186)

Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Deltanth1), acid trehalase mutants (Deltaath1), and double mutants (Deltanth1 ath1) by using commercial baker's yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The Deltanth1 and Deltaath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the Deltanth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough.  (+info)

Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. (3/186)

A variety of results has been obtained consistent with activation of neutral trehalase in Saccharomyces cerevisiae through direct phosphorylation by cAMP-dependent protein kinase (PKA). A series of neutral trehalase mutant alleles, in which all evolutionarily conserved putative phosphorylation sites were changed into alanine, was tested for activation in vitro (by PKA) and in vivo (by glucose addition). None of the mutations alone affected the activation ratio, whereas all mutations combined resulted in an inactive enzyme. All mutant alleles were expressed to similar levels, as shown by Western blotting. Several of the point mutations significantly lowered the specific activity. Using this series of mutants with different activity levels we show an inverse relationship between trehalase activity and heat-shock survival during glucose-induced trehalose mobilization. This is consistent with a stress-protective function of trehalose. On the other hand, reduction of trehalase activity below a certain threshold level impaired recovery from a sublethal heat shock. This suggests that trehalose breakdown is required for efficient recovery from heat shock, and that the presence of trehalase protein alone is not sufficient for efficient heat-stress recovery.  (+info)

ELISA for urinary trehalase with monoclonal antibodies: a technique for assessment of renal tubular damage. (4/186)

BACKGROUND: alpha,alpha-Trehalase, located on renal proximal tubules, is a glycoprotein that hydrolyses alpha,alpha-trehalose to two glucose molecules. Urinary trehalase reflects damage to renal proximal tubules, but its activity has not been measured routinely because measurement of catalytic activity is rather complicated and because conventional assays for enzyme activity might not reflect all of the trehalase protein because of enzyme inactivation in urinary samples. METHODS: We established novel monoclonal antibodies for human trehalase and a sandwich ELISA for quantification of urinary trehalase. We determined the urinary trehalase protein concentration with this ELISA and trehalase catalytic activity, and the results of these two methods were compared. RESULTS: The ELISA system was more sensitive than the detection of enzyme activity and could detect a subtle difference in the amount of trehalase present in renal diseases. The within- and between-assay CVs in the ELISA were 6.7-7.6% and 6.2-8.2%, respectively. Highly significant increases in both the quantity and activity were seen in patients with nephrotic syndrome (acute phase), Lowe syndrome, and Dent disease. The quantities were 70- to 200-fold greater, whereas enzyme activities were, at most, 10-fold higher than those of control subjects. In the detection of small amounts of trehalase in patients with chronic glomerulonephritis and renal anomalies, quantities were better than enzyme activities. CONCLUSIONS: We have established an ELISA system for quantification of urinary trehalase that uses novel monoclonal antibodies. Our ELISA system is simpler and more sensitive than a conventional activity assay and reflects trehalase protein. This ELISA can be a useful as a common tool for clinical assessment of renal proximal tubular damage.  (+info)

The yeast A kinases differentially regulate iron uptake and respiratory function. (5/186)

Yeast has three A kinase catalytic subunits, which have greater than 75% identity and are encoded by the TPK genes (TPK1, TPK2, and TPK3) [Toda, T., Cameron, S., Sass, P., Zoller, M. & Wigler, M. (1987) Cell 50, 277-287]. Although they are redundant for viability, the three A kinases are not redundant for pseudohyphal growth [Robertson, L. S. & Fink, G. R. (1998) Proc. Natl. Acad. Sci. USA 95, 13783-13787; Pan, X. & Heitman, J. (1999) Mol. Cell. Biol. 19, 4874-4887]; Tpk2, but not Tpk1 or Tpk3, is required for pseudohyphal growth. Genome-wide transcriptional profiling has revealed unique signatures for each of the three A kinases leading to the identification of additional functional diversity among these proteins. Tpk2 negatively regulates genes involved in iron uptake and positively regulates genes involved in trehalose degradation and water homeostasis. Tpk1 is required for the derepression of branched chain amino acid biosynthesis genes that seem to have a second role in the maintenance of iron levels and DNA stability within mitochondria. The fact that TPK2 mutants grow better than wild types on nonfermentable carbon sources and on media deficient in iron supports the unique role of Tpk2 in respiratory growth and carbon source use.  (+info)

Determinants of translocation and folding of TreF, a trehalase of Escherichia coli. (6/186)

One isoform of trehalase, TreF, is present in the cytoplasm and a second, TreA, in the periplasm. To study the questions of why one enzyme is exported efficiently and the other is not and whether these proteins can fold in their nonnative cellular compartment, we fused the signal sequence of periplasmic TreA to cytoplasmic TreF. Even though this TreF construct was exported efficiently to the periplasm, it was not active. It was insoluble and degraded by the periplasmic serine protease DegP. To determine why TreF was misfolded in the periplasm, we isolated and characterized Tre(+) revertants of periplasmic TreF. To further characterize periplasmic TreF, we used a genetic selection to isolate functional TreA-TreF hybrids, which were analyzed with respect to solubility and function. These data suggested that a domain located between residues 255 and 350 of TreF is sufficient to cause folding problems in the periplasm. In contrast to TreF, periplasmic TreA could fold into the active conformation in its nonnative cellular compartment, the cytoplasm, after removal of its signal sequence.  (+info)

Influence of exocrine and endocrine pancreatic function on intestinal brush border enaymatic activities. (7/186)

Digestive enzymatic activities (disaccharidases, alkaline phosphatase, peptide hydrolases) have been determined in the mucosa of 14 patients with chronic pancreatitis. All had an abnormal secretin-pancreozymin test. Four patients had insulin-dependent diabetes mellitus, four a pathological glucose tolerance test. Nine patients had steatorrhoea. Maltase, sucrase, and alkaline phosphatase activity was significantly elevated in patients with exocrine pancreatic insufficiency, whereas those of lactase, trehalase, and peptide hydrolase were normal. Patients with steatorrhoea had higher maltase and sucrase activity than those without steatorrhoea, whereas decreased glucose tolerance had no effect on brush border enzymatic activity. It is suggested thatdecreased exocrine rather than decreased endocrine pancreatic function is responsible for the increase in intestinal disaccharidase and alkaline phosphatase activity, possible by the influence of pacreatic enzymes on the turnover of brush border enzymes from the luminal side of the mucosal membranes or by direct hormonal stimulation though cholecystokinin.  (+info)

A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. (8/186)

The construction of mutant fungal strains is often limited by the poor efficiency of homologous recombination in these organisms. Higher recombination efficiencies can be obtained by increasing the length of homologous DNA flanking the transformation marker, although this is a tedious process when standard molecular biology techniques are used for the construction of gene replacement cassettes. Here, we present a two-step technology which takes advantage of an Escherichia coli strain expressing the phage lambda Red(gam, bet, exo) functions and involves (i) the construction in this strain of a recombinant cosmid by in vivo recombination between a cosmid carrying a genomic region of interest and a PCR-generated transformation marker flanked by 50 bp regions of homology with the target DNA and (ii) genetic exchange in the fungus itself between the chromosomal locus and the circular or linearized recombinant cosmid. This strategy enables the rapid establishment of mutant strains carrying gene knock-outs with efficiencies >50%. It should also be appropriate for the construction of fungal strains with gene fusions or promoter replacements.  (+info)