(1/4900) Expression and characterization of the intact N-terminal domain of streptokinase.

Proteolytic studies have enabled two of the three putative domains of the fibrinolytic protein streptokinase to be isolated and characterized (Conejero-Lara F et al., 1996, Protein Sci 5:2583-2591). The N-terminal domain, however, could not be isolated in these experiments because of its susceptibility to proteolytic cleavage. To complete the biophysical characterization of the domain structure of streptokinase we have overexpressed, purified, and characterized the N-terminal region of the protein, residues 1-146. The results show this is cooperatively folded with secondary structure content and overall stability closely similar to those of the equivalent region in the intact protein.  (+info)

(2/4900) A novel plasmid recombination mechanism of the marine cyanobacterium Synechococcus sp. PCC7002.

We describe a novel mechanism of site-specific recombination in the unicellular marine cyanobacterium Synechococcus sp. PCC7002. The specific recombination sites on the smallest plasmid pAQ1 were localized by studying the properties of pAQ1-derived shuttle-vectors. We found that a palindromic element, the core sequence of which is G(G/A)CGATCGCC, functions as a resolution site for site-specific plasmid recombination. Furthermore, site-directed mutagenesis analysis of the element show that the site-specific recombination in the cyanobacterium requires sequence specificity, symmetry in the core sequence and, in part, the spacing between the elements. Interestingly, this element is over-represented not only in pAQ1 and in the genome of the cyanobacterium, but also in the accumulated cyanobacterial sequences from Synechococcus sp. PCC6301, PCC7942, vulcanus and Synechocystis sp. PCC6803 within GenBank and EMBL databases. Thus, these findings strongly suggest that the site-specific recombination mechanism based on the palindromic element should be common in these cyanobacteria.  (+info)

(3/4900) Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism.

The role of the Trichoderma harzianum endochitinase (Ech42) in mycoparasitism was studied by genetically manipulating the gene that encodes Ech42, ech42. We constructed several transgenic T. harzianum strains carrying multiple copies of ech42 and the corresponding gene disruptants. The level of extracellular endochitinase activity when T. harzianum was grown under inducing conditions increased up to 42-fold in multicopy strains as compared with the wild type, whereas gene disruptants exhibited practically no activity. The densities of chitin labeling of Rhizoctonia solani cell walls, after interactions with gene disruptants were not statistically significantly different than the density of chitin labeling after interactions with the wild type. Finally, no major differences in the efficacies of the strains generated as biocontrol agents against R. solani or Sclerotium rolfsii were observed in greenhouse experiments.  (+info)

(4/4900) A phosphonate-induced gene which promotes Penicillium-mediated bioconversion of cis-propenylphosphonic acid to fosfomycin.

Penicillium decumbens is able to epoxidize cis-propenylphosphonic acid (cPA) to produce the antibiotic fosfomycin [FOM; also referred to as phosphonomycin and (-)-cis-1,2-epoxypropylphosphonic acid], a bioconversion of considerable commercial significance. We sought to improve the efficiency of the process by overexpression of the genes involved. A conventional approach of isolating the presumed epoxidase and its corresponding gene was not possible since cPA epoxidation could not be achieved with protein extracts. As an alternative approach, proteins induced by cPA were detected by two-dimensional gel electrophoresis. The observation that a 31-kDa protein (EpoA) was both cPA induced and overaccumulated in a strain which more efficiently converted cPA suggested that it might take part in the bioconversion. EpoA was purified, its amino acid sequence was partially determined, and the corresponding gene was isolated from cosmid and cDNA libraries with oligonucleotide probes. The DNA sequence for this gene (epoA) contained two introns and an open reading frame encoding a peptide of 277 amino acids having some similarity to oxygenases. When the gene was subcloned into P. decumbens, a fourfold increase in epoxidation activity was achieved. epoA-disruption mutants which were obtained by homologous recombination could not convert cPA to FOM. To investigate the regulation of the epoA promoter, the bialaphos resistance gene (bar, encoding phosphinothricin acetyltransferase) was used to replace the epoA-coding region. In P. decumbens, expression of the bar reporter gene was induced by cPA, FOM, and phosphorous acid but not by phosphoric acid.  (+info)

(5/4900) Thaumatin production in Aspergillus awamori by use of expression cassettes with strong fungal promoters and high gene dosage.

Four expression cassettes containing strong fungal promoters, a signal sequence for protein translocation, a KEX protease cleavage site, and a synthetic gene (tha) encoding the sweet protein thaumatin II were used to overexpress this protein in Aspergillus awamori lpr66, a PepA protease-deficient strain. The best expression results were obtained with the gdhA promoter of A. awamori or with the gpdA promoter of Aspergillus nidulans. There was good correlation of tha gene dosage, transcript levels, and thaumatin secretion. The thaumatin gene was expressed as a transcript of the expected size in each construction (1.9 or 1.4 kb), and the transcript levels and thaumatin production rate decayed at the end of the growth phase, except in the double transformant TB2b1-44-GD5, in which secretion of thaumatin continued until 96 h. The recombinant thaumatin secreted by a high-production transformant was purified to homogeneity, giving one major component and two minor components. In all cases, cleavage of the fused protein occurred at the KEX recognition sequence. This work provides new expression systems in A. awamori that result in very high levels of thaumatin production.  (+info)

(6/4900) Identification of RNase T as a high-copy suppressor of the UV sensitivity associated with single-strand DNA exonuclease deficiency in Escherichia coli.

There are three known single-strand DNA-specific exonucleases in Escherichia coli: RecJ, exonuclease I (ExoI), and exonuclease VII (ExoVII). E. coli that are deficient in all three exonucleases are abnormally sensitive to UV irradiation, most likely because of their inability to repair lesions that block replication. We have performed an iterative screen to uncover genes capable of ameliorating the UV repair defect of xonA (ExoI-) xseA (ExoVII-) recJ triple mutants. In this screen, exonuclease-deficient cells were transformed with a high-copy E. coli genomic library and then irradiated; plasmids harvested from surviving cells were used to seed subsequent rounds of transformation and selection. After several rounds of selection, multiple plasmids containing the rnt gene, which encodes RNase T, were found. An rnt plasmid increased the UV resistance of a xonA xseA recJ mutant and uvrA and uvrC mutants; however, it did not alter the survival of xseA recJ or recA mutants. RNase T also has amino acid sequence similarity to other 3' DNA exonucleases, including ExoI. These results suggest that RNase T may possess a 3' DNase activity capable of substituting for ExoI in the recombinational repair of UV-induced lesions.  (+info)

(7/4900) Hmo1p, a high mobility group 1/2 homolog, genetically and physically interacts with the yeast FKBP12 prolyl isomerase.

The immunosuppressive drugs FK506 and rapamycin bind to the cellular protein FKBP12, and the resulting FKBP12-drug complexes inhibit signal transduction. FKBP12 is a ubiquitous, highly conserved, abundant enzyme that catalyzes a rate-limiting step in protein folding: peptidyl-prolyl cis-trans isomerization. However, FKBP12 is dispensible for viability in both yeast and mice, and therefore does not play an essential role in protein folding. The functions of FKBP12 may involve interactions with a number of partner proteins, and a few proteins that interact with FKBP12 in the absence of FK506 or rapamycin have been identified, including the ryanodine receptor, aspartokinase, and the type II TGF-beta receptor; however, none of these are conserved from yeast to humans. To identify other targets and functions of FKBP12, we have screened for mutations that are synthetically lethal with an FKBP12 mutation in yeast. We find that mutations in HMO1, which encodes a high mobility group 1/2 homolog, are synthetically lethal with mutations in the yeast FPR1 gene encoding FKBP12. Deltahmo1 and Deltafpr1 mutants share two phenotypes: an increased rate of plasmid loss and slow growth. In addition, Hmo1p and FKBP12 physically interact in FKBP12 affinity chromatography experiments, and two-hybrid experiments suggest that FKBP12 regulates Hmo1p-Hmo1p or Hmo1p-DNA interactions. Because HMG1/2 proteins are conserved from yeast to humans, our findings suggest that FKBP12-HMG1/2 interactions could represent the first conserved function of FKBP12 other than mediating FK506 and rapamycin actions.  (+info)

(8/4900) Localization and properties of a silencing element near the mat3-M mating-type cassette of Schizosaccharomyces pombe.

Transcription is repressed in a segment of Schizosaccharomyces pombe chromosome II that encompasses the mat2-P and mat3-M mating-type cassettes. Chromosomal deletion analysis revealed the presence of a repressor element within 500 bp of mat3-M. This element acted in synergy with the trans-acting factors Swi6, Clr1, Clr2, Clr3, and Clr4 and had several properties characteristic of silencers: it did not display promoter specificity, being able to silence not only the M mating-type genes but also the S. pombe ura4 and ade6 genes placed on the centromere-distal side of the mat3-M cassette; it could repress a gene when placed further than 2.6 kb from the promoter and it acted in both orientations, although with different efficiencies, the natural orientation repressing more stringently than the reverse. Following deletion of this element, two semistable states of expression of the mat3-M region were observed and these two states could interconvert. The deletion did not affect gene expression in the vicinity of the mat2-P cassette, 11 kb away from mat3-M. Conversely, deleting 1.5 kb on the centromere-proximal side of the mat2-P cassette, which was previously shown to partially derepress transcription around mat2-P, had no effect on gene expression near mat3-M. A double deletion removing the mat2-P and mat3-M repressor elements had the same effect as the single deletions on their respective cassettes when assayed in cells of the M mating type. These observations allow us to refine a model proposing that redundant pathways silence the mating type region of S. pombe.  (+info)