Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins. (1/135)

Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate).  (+info)

Antennae on transmitters on penguins: balancing energy budgets on the high wire. (2/135)

The effect of externally mounted antennae on the energetics of penguins was studied by mounting various antennae on a transducer fixed to a model Magellanic penguin Spheniscus magellanicus to determine drag, run at speeds of up to 2 m s(-1) in a swim canal. For rigid antennae set perpendicular to the water flow, measured drag increased with increasing swim speed. Increasing antenna length (for lengths between 100 and 200 mm) or diameter (for diameters between 1 and 4 mm) resulted in accelerating increased drag as a function of both antenna length and diameter. Where antennae were positioned at acute angles to the water flow, drag was markedly reduced, as was drag at higher speeds in flexible antennae. These results were incorporated in a model on the foraging energetics of free-living Magellanic penguins using data (on swim speeds, intervals between prey encounters, amount ingested per patch and dive durations) derived from previously published work and from a field study conducted on birds from a colony at Punta Norte, Argentina, using data loggers. The field work indicated that free-living birds have a foraging efficiency (net energy gain/net energy loss) of about 2.5. The model predicted that birds equipped with the largest rigid external antennae tested (200 mm x 3 mm diameter), set perpendicular to water flow, increased energy expenditure at normal swim speeds of 1.77 m s(-1) by 79% and at prey capture speeds of 2.25 m s(-1) by 147%, and ultimately led to a foraging efficiency that was about 5 times less than that of unequipped birds. Highly flexible antennae were shown to reduce this effect considerably. Deleterious antenna-induced effects are predicted to be particularly critical in penguins that have to travel fast to capture prey. Possible measures taken by the birds to increase foraging efficiency could include reduced travelling speed and selection of smaller prey types. Suggestions are made as to how antenna-induced drag might be minimized for future studies on marine diving animals.  (+info)

Adjustments of gastric pH, motility and temperature during long-term preservation of stomach contents in free-ranging incubating king penguins. (3/135)

Male king penguins are able to store undigested food in their stomach for up to 3 weeks during their incubation fast, which evidently implies some modification of their digestive process. Using small electronic recorders, we studied the change in gastric pH, motility and temperature during the first week of food storage. The pH could be maintained at values as high as 6 throughout the incubation fast, a pH that is unfavourable for avian gastric proteinase activity. Gastric motility was never completely inhibited but could be markedly reduced. Stomach temperature was maintained at around 38 degrees C. The fact that stomach temperature of incubating birds did not show a daily rhythmic fluctuation as seen in non-breeding birds could be due to temperature constraints on embryo development. Thus the present study demonstrates substantial adjustments of pH and gastric motility in incubating king penguins, which may contribute to the inhibition of digestive gastric processes.  (+info)

Penguins and their noisy world. (4/135)

Penguins identify their mate or chick by an acoustic signal, the display call. This identification is realized in a particularly constraining environment: the noisy world of a colony of thousands of birds. To fully understand how birds solve this problem of communication, we have done observations, acoustic analysis, propagation and playback experiments with 6 species of penguins studied in the field. According to our results, it appears that penguins use a particularly efficient "anti-confusion" and "anti-noise" coding system, allowing a quick identification and localization of individuals on the move in a noisy crowd.  (+info)

Heart rate and energetics of free-ranging king penguins (Aptenodytes patagonicus). (5/135)

The main objective of this study was to determine heart rate (fh) and the energetic costs of specific behaviours of king penguins while ashore and while foraging at sea during their breeding period. In particular, an estimate was made of the energetic cost of diving in order to determine the proportion of dives that may exceed the calculated aerobic dive limit (cADL; estimated usable O2 stores/estimated rate of oxygen consumption during diving). An implanted data logger enabled fh and diving behaviour to be monitored from 10 free-ranging king penguins during their breeding period. Using previously determined calibration equations, it was possible to estimate rate of oxygen consumption (VO2) when the birds were ashore and during various phases of their foraging trips. Diving behaviour showed a clear diurnal pattern, with a mixture of deep (>40 m), long (>3 min) and shallow (<40 m), short (<3 min) dives from dawn to dusk and shallow, short dives at night. Heart rate during dive bouts and dive cycles (dive + post-dive interval) was 42% greater than that when the birds were ashore. During diving, fh was similar to the 'ashore' value (87+/-4 beats min(-1)), but it did decline to 76% of the value recorded from king penguins resting in water. During the first hour after a diving bout, fh was significantly higher than the average value during diving (101+/-4 beats min(-1)) and for the remainder of the dive bout. Rates of oxygen consumption estimated from these (and other) values of fh indicate that when at sea, metabolic rate (MR) was 83% greater than that when the birds were ashore [3.15 W kg(-1) (-0.71, +0.93), where the values in parentheses are the computed standard errors of the estimate], while during diving bouts and dive cycles, it was 73% greater than the 'ashore' value. Although estimated MR during the total period between dive bouts was not significantly different from that during dive bouts [5.44 W kg(-1) (-0.30, +0.32)], MR during the first hour following a dive bout was 52% greater than that during a diving bout. It is suggested that this large increase following diving (foraging) activity is, at least in part, the result of rewarming the body, which occurs at the end of a diving bout. From the measured behaviour and estimated values of VO2, it was evident that approximately 35% of the dives were in excess of the cADL. Even if VO2 during diving was assumed to be the same as when the birds were resting on water, approximately 20% of dives would exceed the cADL. As VO2 during diving is, in fact, that estimated for a complete dive cycle, it is quite feasible that VO2 during diving itself is less than that measured for birds resting in water. It is suggested that the regional hypothermia that has been recorded in this species during diving bouts may be at least a contributing factor to such hypometabolism.  (+info)

Why do macaroni penguins choose shallow body angles that result in longer descent and ascent durations? (6/135)

It is generally assumed that air-breathing aquatic animals always choose the shortest route to minimize duration for transit between the surface and foraging depth in order to maximize the proportion of time spent foraging. However, empirical data indicate that the body angles of some diving animals are rarely vertical during descent and ascent. Why do they choose shallower body angles that result in longer descent and ascent durations? To investigate this question, we attached acceleration data loggers to eight female macaroni penguins, breeding on the Kerguelen Islands (48 degrees 45'-50 degrees 00' S, 68 degrees 45'-70 degrees 58' E; South Indian Ocean), to record depth, two-dimensional acceleration (stroke cycle frequency and body angle) and temperature. We investigated how they controlled body angle and allocated their submerged time. The instrumented females performed multiple dives (N=6952) with a mean dive depth for each bird ranging from 24.5+/-28.5 m to 56.4+/-75.1 m. Mean body angles during descent and ascent were not vertical. There was large variation in mean descent and ascent angles for a given dive depth, which, in turn, caused large variation in descent and ascent duration. Body angles were significantly correlated with time spent at the bottom-phase of the dive. Birds that spent long periods at the bottom exhibited steep body angles during ascent and subsequent descent. By contrast, they adopted shallow body angles after they had short or no bottom phases. Our results suggest that macaroni penguins stay at the bottom longer after encountering a good prey patch and then travel to the surface at steep body angles. If they do not encounter prey, they discontinue the dive, without staying at the bottom, ascend at shallow body angles and descend at shallow body angles in a subsequent dive. A shallow body angle can increase the horizontal distance covered during a dive, contributing to the move into a more profitable area in the following dive. During the ascent, in particular, macaroni penguins stopped beating their flippers. The buoyantly gliding penguins can move horizontally with minimum stroking effort before reaching the surface.  (+info)

Penguin-mounted cameras glimpse underwater group behaviour. (7/135)

Marine birds and mammals spend most of their lives in the open ocean far from human observation, which makes obtaining information about their foraging behaviour difficult. Here, we show, by use of a miniaturized digital camera system, the first direct evidence (to our knowledge) of underwater group behaviour in free-ranging penguins. Penguins swim closely accompanied by other bird(s) during 24% of their possible foraging dives. This finding confirms that such miniaturized camera technology has broad applicability for advancing our knowledge about the previously unknown social interactions of marine animals at depth.  (+info)

Long-term effects of flipper bands on penguins. (8/135)

Changes in seabird populations, and particularly of penguins, offer a unique opportunity for investigating the impact of fisheries and climatic variations on marine resources. Such investigations often require large-scale banding to identify individual birds, but the significance of the data relies on the assumption that no bias is introduced in this type of long-term monitoring. After 5 years of using an automated system of identification of king penguins implanted with electronic tags (100 adult king penguins were implanted with a transponder tag, 50 of which were also flipper banded), we can report that banding results in later arrival at the colony for courtship in some years, lower breeding probability and lower chick production. We also found that the survival rate of unbanded, electronically tagged king penguin chicks after 2-3 years is approximately twice as large as that reported in the literature for banded chicks.  (+info)