(1/42092) Fitzgerald factor (high molecular weight kininogen) clotting activity in human plasma in health and disease in various animal plasmas.

Fitzgerald factor (high molecular weight kininogen) is an agent in normal human plasma that corrects the impaired in vitro surface-mediated plasma reactions of blood coagulation, fibrinolysis, and kinin generation observed in Fitzgerald trait plasma. To assess the possible pathophysiologic role of Fitzgerald factor, its titer was measured by a functional clot-promoting assay. Mean +/- SD in 42 normal adults was 0.99+/-0.25 units/ml, one unit being the activity in 1 ml of normal pooled plasma. No difference in titer was noted between normal men and women, during pregnancy, or after physical exercise. Fitzgerald factor activity was significantly reduced in the plasmas of eight patients with advanced hepatic cirrhosis (0.40+/-0.09 units/ml) and of ten patients with disseminated intravascular coagulation (0.60+/-0.30 units/ml), but was normal in plasmas of patients with other congenital clotting factor deficiencies, nephrotic syndrome, rheumatoid arthritis, systemic lupus erythematosus, or sarcoidosis, or under treatment with warfarin. The plasmas of 21 mammalian species tested appeared to contain Fitzgerald factor activity, but those of two avian, two repitilian, and one amphibian species did not correct the coagulant defect in Fitzgerald trait plasmas.  (+info)

(2/42092) Differences in benzo(a)pyrene metabolism between rodent liver microsomes and embryonic cells.

Differences in benzo(a)pyrene metabolite pattern have been shown by rodent liver microsomes (Sprague-Dawley) and rodent embryo cells from Syrian hamsters and NIH Swiss mice. Rodent liver induced by methylcholanthrene shows marked quantitative variation between species. Additional pattern changes were found in mouse and hamster embryo secondary cultures with a reduction of the K-region metabolites and a marked increase in 9-hydroxybenzo(a)-pyrene. These results are indicative of a region-specific attack on the carcinogen by the cell monooxygenases which is distinct from the liver attack of microsomal enzymes on benzo(a)pyrene. These results suggest that activation and detoxification of benzo(a)pyrene may be species and tissue variable, and susceptibility and resistence to malignant transformation may be predicted on induction of a fortuitous combination of intermediate metabolic steps.  (+info)

(3/42092) Effect of sex difference on the in vitro and in vivo metabolism of aflatoxin B1 by the rat.

Hepatic microsome-catalyzed metabolism of aflatoxin B1 (AFB1) to aflatoxin M1 and aflatoxin Q1 and the "metabolic activation" of AFB1 to DNA-alylating metabolite(s) were studied in normal male and female Sprague-Dawley rats, in gonadectomized animals, and in castrated males and normal females treated with testosterone. Microsomes from male animals formed 2 to 5 times more aflatoxin M1, aflatoxin Q1, and DNA-alkylating metabolite(s) than those from females. Castration reduced the metabolism of AFB1 by the microsomes from males by about 50%, whereas ovariectomy had no significant effect on AFB1 metabolism by the microsomes from females. Testosterone treatment (4 mg/rat, 3 times/week for about 6 weeks) of castrated immature males and immature females enhanced the metabolism of AFB1 by their microsomes. A sex difference in the metabolism of AFB1 by liver microsomes was also seen in other strains of rats tested: Wistar, Long-Evans, and Fischer. The activity of kidney microsomes for metabolic activation was 1 to 4% that of the liver activity and was generally lower in microsomes from male rats as compared to those from female rats of Sprague-Dawley, Wistar, and Long-Evans strains. The in vitro results obtained with hepatic microsomes correlated well with the in vivo metabolism of AFB1, in that more AFB1 became bound in vivo to hepatic DNA isolated from male rats and from a female rat treated with testosterone than that isolated from control female rats. These data suggest that the differences in hepatic AFB1 metabolism may be the underlying cause of the sex difference in toxicity and carcinogenicity of AFB1 observed in rats.  (+info)

(4/42092) Microbial and chemical transformations of some 12,13-epoxytrichothec-9,10-enes.

Resting cells of Streptomyces griseus, Mucor mucedo, and a growing culture of Acinetobacter calcoaceticus when mixed with compounds related to 12,13-epoxytrichothec-9-ene-4beta,15-diacetoxy-3alpha-ol(anguidine) produced a series of derivatives that were either partially hydrolyzed or selectively acylated. These derivatives showed marked differences in activities as assayed by antifungal and tissue culture cytotoxicity tests.  (+info)

(5/42092) Fecal coliform elevated-temperature test: a physiological basis.

The physiological basis of the Eijkman elevated-temperature test for differentiating fecal from nonfecal coliforms was investigated. Manometric studies indicated that the inhibitory effect upon growth and metabolism in a nonfecal coliform at 44.5 degrees C involved cellular components common to both aerobic and fermentative metabolism of lactose. Radioactive substrate incorporation experiments implicated cell membrane function as a principal focus for temperature sensitivity at 44.5 degrees C. A temperature increase from 35 to 44.5 degrees C drastically reduced the rates of [14C]glucose uptake in nonfecal coliforms, whereas those of fecal coliforms were essentially unchanged. In addition, relatively low levels of nonfecal coliform beta-galactosidase activity coupled with thermal inactivation of this enzyme at a comparatively low temperature may also inhibit growth and metabolism of nonfecal coliforms at the elevated temperature.  (+info)

(6/42092) Features of the immune response to DNA in mice. I. Genetic control.

The genetic control of the immune response to DNA was studied in various strains of mice F1 hybrids and corresponding back-crosses immunized with single stranded DNA complexed to methylated bovine serum albumin. Anti-DNA antibody response was measured by radioimmuno-logical technique. High responder, low responder, and intermediate responder strains were found and the ability to respond to DNA was characterized as a dominant genetic trait which is not linked to the major locus of histocompatibility. Studies in back-crosses suggested that this immune response is under multigenic control. High responder mice produce both anti-double stranded DNA and anti-single stranded DNA 7S and 19S antibodies, while low responder mice produce mainly anti-single stranded DNA 19S antibodies.  (+info)

(7/42092) Lack of genic similarity between two sibling species of drosophila as revealed by varied techniques.

Acrylamide gel electrophoresis was performed on the enzyme xanthine dehydrogenase in sixty isochromosomal lines of Drosophila persimilis from three geographic populations. Sequential electrophoretic analysis using varied gel concentrations and buffers revealed twenty-three alleles in this species where only five had been described previously. These new electrophoretic techniques also detected a profound increase in divergence of gene frequencies at this locus between D. persimilis and its sibling species D. pseudoobscura. The implications of these results for questions of speciation and the maintenance of genetic variability are discussed.  (+info)

(8/42092) Genetic heterogeneity within electrophoretic "alleles" of xanthine dehydrogenase in Drosophila pseudoobscura.

An experimental plan for an exhaustive determination of genic variation at structural gene loci is presented. In the initial steps of this program, 146 isochromosomal lines from 12 geographic populations of D. pseudoobscura were examined for allelic variation of xanthine dehydrogenase by the serial use of 4 different electrophoretic conditions and a head stability test. The 5 criteria revealed a total of 37 allelic classes out of the 146 genomes examined where only 6 had been previously revealed by the usual method of gel electrophoresis. This immense increase in genic variation also showed previously unsuspected population differences between the main part of the species distribution and the isolated population of Bogota population. The average heterozygosity at the Xdh locus is at least 72% in natural populations. This result, together with the very large number of alleles segregating and the pattern of allelic frequencies, has implications for theories of genetic polymorphism which are discussed.  (+info)