(1/128527) Inducible NO synthase: role in cellular signalling.

The discovery of endothelium-derived relaxing factor and its identification as nitric oxide (NO) was one of the most exciting discoveries of biomedical research in the 1980s. Besides its potent vasodilatory effects, NO was found under certain circumstances to be responsible for the killing of microorganisms and tumour cells by activated macrophages and to act as a novel, unconventional type of neurotransmitter. In 1992, Science picked NO as the 'Molecule of the Year', and over the past years NO has become established as a universal intercellular messenger that acutely affects important signalling pathways and, on a more long-term scale, modulates gene expression in target cells. These actions will form the focus of the present review.  (+info)

(2/128527) The surface ectoderm is essential for nephric duct formation in intermediate mesoderm.

The nephric duct is the first epithelial tubule to differentiate from intermediate mesoderm that is essential for all further urogenital development. In this study we identify the domain of intermediate mesoderm that gives rise to the nephric duct and demonstrate that the surface ectoderm is required for its differentiation. Removal of the surface ectoderm resulted in decreased levels of Sim-1 and Pax-2 mRNA expression in mesenchymal nephric duct progenitors, and caused inhibition of nephric duct formation and subsequent kidney development. The surface ectoderm expresses BMP-4 and we show that it is required for the maintenance of high-level BMP-4 expression in lateral plate mesoderm. Addition of a BMP-4-coated bead to embryos lacking the surface ectoderm restored normal levels of Sim-1 and Pax-2 mRNA expression in nephric duct progenitors, nephric duct formation and the initiation of nephrogenesis. Thus, BMP-4 signaling can substitute for the surface ectoderm in supporting nephric duct morphogenesis. Collectively, these data suggest that inductive interactions between the surface ectoderm, lateral mesoderm and intermediate mesoderm are essential for nephric duct formation and the initiation of urogenital development.  (+info)

(3/128527) Retinoids are produced by glia in the lateral ganglionic eminence and regulate striatal neuron differentiation.

In order to identify molecular mechanisms involved in striatal development, we employed a subtraction cloning strategy to enrich for genes expressed in the lateral versus the medial ganglionic eminence. Using this approach, the homeobox gene Meis2 was found highly expressed in the lateral ganglionic eminence and developing striatum. Since Meis2 has recently been shown to be upregulated by retinoic acid in P19 EC cells (Oulad-Abdelghani, M., Chazaud, C., Bouillet, P., Sapin, V., Chambon, P. and Dolle, P. (1997) Dev. Dyn. 210, 173-183), we examined a potential role for retinoids in striatal development. Our results demonstrate that the lateral ganglionic eminence, unlike its medial counterpart or the adjacent cerebral cortex, is a localized source of retinoids. Interestingly, glia (likely radial glia) in the lateral ganglionic eminence appear to be a major source of retinoids. Thus, as lateral ganglionic eminence cells migrate along radial glial fibers into the developing striatum, retinoids from these glial cells could exert an effect on striatal neuron differentiation. Indeed, the treatment of lateral ganglionic eminence cells with retinoic acid or agonists for the retinoic acid receptors or retinoid X receptors, specifically enhances their striatal neuron characteristics. These findings, therefore, strongly support the notion that local retinoid signalling within the lateral ganglionic eminence regulates striatal neuron differentiation.  (+info)

(4/128527) Membrane-tethered Drosophila Armadillo cannot transduce Wingless signal on its own.

Drosophila Armadillo and its vertebrate homolog beta-catenin are key effectors of Wingless/Wnt signaling. In the current model, Wingless/Wnt signal stabilizes Armadillo/beta-catenin, which then accumulates in nuclei and binds TCF/LEF family proteins, forming bipartite transcription factors which activate transcription of Wingless/Wnt responsive genes. This model was recently challenged. Overexpression in Xenopus of membrane-tethered beta-catenin or its paralog plakoglobin activates Wnt signaling, suggesting that nuclear localization of Armadillo/beta-catenin is not essential for signaling. Tethered plakoglobin or beta-catenin might signal on their own or might act indirectly by elevating levels of endogenous beta-catenin. We tested these hypotheses in Drosophila by removing endogenous Armadillo. We generated a series of mutant Armadillo proteins with altered intracellular localizations, and expressed these in wild-type and armadillo mutant backgrounds. We found that membrane-tethered Armadillo cannot signal on its own; however it can function in adherens junctions. We also created mutant forms of Armadillo carrying heterologous nuclear localization or nuclear export signals. Although these signals alter the subcellular localization of Arm when overexpressed in Xenopus, in Drosophila they have little effect on localization and only subtle effects on signaling. This supports a model in which Armadillo's nuclear localization is key for signaling, but in which Armadillo intracellular localization is controlled by the availability and affinity of its binding partners.  (+info)

(5/128527) Regulation of body length and male tail ray pattern formation of Caenorhabditis elegans by a member of TGF-beta family.

We have identified a new member of the TGF-beta superfamily, CET-1, from Caenorhabditis elegans, which is expressed in the ventral nerve cord and other neurons. cet-1 null mutants have shortened bodies and male tail abnormal phenotype resembling sma mutants, suggesting cet-1, sma-2, sma-3 and sma-4 share a common pathway. Overexpression experiments demonstrated that cet-1 function requires wild-type sma genes. Interestingly, CET-1 appears to affect body length in a dose-dependent manner. Heterozygotes for cet-1 displayed body lengths ranging between null mutant and wild type, and overexpression of CET-1 in wild-type worms elongated body length close to lon mutants. In male sensory ray patterning, lack of cet-1 function results in ray fusions. Epistasis analysis revealed that mab-21 lies downstream and is negatively regulated by the cet-1/sma pathway in the male tail. Our results show that cet-1 controls diverse biological processes during C. elegans development probably through different target genes.  (+info)

(6/128527) Cancer genetics: tumor suppressor meets oncogene.

The adenomatous polyposis coli (APC) tumor suppressor protein is inactivated by mutations in the majority of colorectal cancers. A recent study has revealed that alterations in the APC signaling pathway can result in the transcriptional activation of the c-MYC gene.  (+info)

(7/128527) The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors.

BACKGROUND: The adaptor protein Gads is a Grb2-related protein originally identified on the basis of its interaction with the tyrosine-phosphorylated form of the docking protein Shc. Gads protein expression is restricted to hematopoietic tissues and cell lines. Gads contains a Src homology 2 (SH2) domain, which has previously been shown to have a similar binding specificity to that of Grb2. Gads also possesses two SH3 domains, but these have a distinct binding specificity to those of Grb2, as Gads does not bind to known Grb2 SH3 domain targets. Here, we investigated whether Gads is involved in T-cell signaling. RESULTS: We found that Gads is highly expressed in T cells and that the SLP-76 adaptor protein is a major Gads-associated protein in vivo. The constitutive interaction between Gads and SLP-76 was mediated by the carboxy-terminal SH3 domain of Gads and a 20 amino-acid proline-rich region in SLP-76. Gads also coimmunoprecipitated the tyrosine-phosphorylated form of the linker for activated T cells (LAT) adaptor protein following cross-linking of the T-cell receptor; this interaction was mediated by the Gads SH2 domain. Overexpression of Gads and SLP-76 resulted in a synergistic augmentation of T-cell signaling, as measured by activation of nuclear factor of activated T cells (NFAT), and this cooperation required a functional Gads SH2 domain. CONCLUSIONS: These results demonstrate that Gads plays an important role in T-cell signaling via its association with SLP-76 and LAT. Gads may promote cross-talk between the LAT and SLP-76 signaling complexes, thereby coupling membrane-proximal events to downstream signaling pathways.  (+info)

(8/128527) Sonic hedgehog signaling by the patched-smoothened receptor complex.

BACKGROUND: The Hedgehog (Hh) family of secreted proteins is involved in a number of developmental processes as well as in cancer. Genetic and biochemical data suggest that the Sonic hedgehog (Shh) receptor is composed of at least two proteins: the tumor suppressor protein Patched (Ptc) and the seven-transmembrane protein Smoothened (Smo). RESULTS: Using a biochemical assay for activation of the transcription factor Gli, a downstream component of the Hh pathway, we show here that Smo functions as the signaling component of the Shh receptor, and that this activity can be blocked by Ptc. The inhibition of Smo by Ptc can be relieved by the addition of Shh. Furthermore, oncogenic forms of Smo are insensitive to Ptc repression in this assay. Mapping of the Smo domains required for binding to Ptc and for signaling revealed that the Smo-Ptc interaction involves mainly the amino terminus of Smo, and that the third intracellular loop and the seventh transmembrane domain are required for signaling. CONCLUSIONS: These data demonstrate that Smo is the signaling component of a multicomponent Hh receptor complex and that Ptc is a ligand-regulated inhibitor of Smo. Different domains of Smo are involved in Ptc binding and activation of a Gli reporter construct. The latter requires the third intracellular loop and the seventh transmembrane domain of Smo, regions often involved in coupling to G proteins. No changes in the levels of cyclic AMP or calcium associated with such pathways could be detected following receptor activation, however.  (+info)