Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. (1/387)

In humans, mutations in the L1 cell adhesion molecule are associated with a neurological syndrome termed CRASH, which includes corpus callosum agenesis, mental retardation, adducted thumbs, spasticity, and hydrocephalus. A mouse model with a null mutation in the L1 gene (Cohen et al., 1997) was analyzed for brain abnormalities by Nissl and Golgi staining and immunocytochemistry. In the motor, somatosensory, and visual cortex, many pyramidal neurons in layer V exhibited undulating apical dendrites that did not reach layer I. The hippocampus of L1 mutant mice was smaller than normal, with fewer pyramidal and granule cells. The corpus callosum of L1-minus mice was reduced in size because of the failure of many callosal axons to cross the midline. Enlarged ventricles and septal abnormalities were also features of the mutant mouse brain. Immunoperoxidase staining showed that L1 was abundant in developing neurons at embryonic day 18 (E18) in wild-type cerebral cortex, hippocampus, and corpus callosum and then declined to low levels with maturation. In the E18 cortex, L1 colocalized with microtubule-associated protein 2, a marker of dendrites and somata. These new findings suggest new roles for L1 in the mechanism of cortical dendrite differentiation, as well as in guidance of callosal axons and regulation of hippocampal development. The phenotype of the L1 mutant mouse indicates that it is a potentially valuable model for the human CRASH syndrome.  (+info)

Modulation of learning and anxiety by corticotropin-releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2. (2/387)

The differential modulation of learning and anxiety by corticotropin-releasing factor (CRF) through CRF receptor subtypes 1 (CRFR1) and 2 (CRFR2) is demonstrated. As learning paradigm, context- and tone-dependent fear conditioning of the mouse was used. Injection of CRF into the dorsal hippocampus before training enhanced learning through CRFR1 as demonstrated by the finding that this effect was prevented by the local injection of the unselective CRFR antagonist astressin, but not by the CRFR2-specific antagonist antisauvagine-30 (anti-Svg-30). In contrast, injection of CRF into the lateral intermediate septum impaired learning through CRFR2, as demonstrated by the ability of antisauvagine-30 to block this effect. When antisauvagine-30 was injected alone into the lateral intermediate septum, learning was enhanced. Such tonic control of learning was not observed when astressin or antisauvagine-30 was injected into the dorsal hippocampus. Injection of CRF after the training into the dorsal hippocampus and the lateral intermediate septum also enhanced and impaired learning, respectively. Thus, it was indicated that CRF acted on memory consolidation. It was concluded that the observed effects reflected changes of associative learning and not arousal, attention, or motivation. Although a dose of 20 pmol human/rat CRF was sufficient to affect learning significantly, a fivefold higher dose was required to induce anxiety by injection into the septum. Immobilization for 1 hr generated a stress response that included the induction of anxiety through septal CRFR2 and the subsequent enhancement of learning through hippocampal CRFR1. The involvement of either receptor subtype was demonstrated by region-specific injections of astressin and antisauvagine-30.  (+info)

Different subtypes of GABAB receptors are present at pre- and postsynaptic sites within the rat dorsolateral septal nucleus. (3/387)

GABAB receptor activation modulates neuronal activity mediated by multiple CNS transmitters and can occur at pre- and postsynaptic sites. In low concentrations, baclofen acts presynaptically to diminish transmitter release via both hetero- and autoreceptors, whereas at increasing concentrations, the same compound alters postsynaptic membrane excitability by inducing a membrane hyperpolarization. We have utilized electrophysiological techniques in vitro to focus on the possibility that pharmacologically different subtypes of GABAB receptors are present on presynaptic sites of glutamatergic terminals when compared with GABAB receptors on postsynaptic sites within the dorsolateral septal nucleus (DLSN). The glutamatergic terminal within the DLSN originates from a pyramidal cell body located within the hippocampus and most likely terminates on a GABAergic neuron from which recordings were made. Whole cell patch voltage-clamp methods were employed to record pharmacologically isolated excitatory postsynaptic currents (EPSCs) from DLSN neurons as an index of glutamatergic transmission. Using a modified internal pipette solution containing QX-314 and in which CsGluconate and GDPbetaS replaced Kgluconate and GTP, respectively, we recorded isolated monosynaptic EPSCs. The GABAA receptor antagonists bicuculline and picrotoxin were included in the external standard superfusion solution. Application of the GABAB receptor agonists, (+/-)-baclofen, CGP44533, and CGP35024 (10 nM to 10 microM) depressed glutamate-mediated EPSCs in a concentration-dependent manner. With the use of this combination of solutions, CGP44533 did not produce postsynaptic membrane property changes. Under these conditions, both (+/-)-baclofen and CGP35024 still induced increases of postsynaptic membrane conductance associated with an outward current. The GABAB receptor antagonist CGP55845A (1 microM) blocked the presynaptic CGP44533-mediated depressant effects of EPSCs, whereas CGP35348 (100 microM) or barium (2 mM) was ineffective. Furthermore, both CGP35348 (100 microM) and CGP55845A (1 microM) were effective in blocking the postsynaptic conductance changes associated with baclofen and CGP35024, whereas barium was ineffective. Our results demonstrate a distinct pharmacology for GABAB agonists acting at putative subtypes of GABAB receptors located on presynaptic sites of a glutamatergic terminal versus GABAB receptors on postsynaptic sites of a DLSN neuron. Furthermore, our results also suggest a different pharmacology and/or coupling of a GABAB receptor to different effectors at postsynaptic sites within the DLSN. Thus there may be three or more pharmacologically distinct GABAB receptors or receptor complexes associated with DLSN neurons: at least one pre- and two postsynaptic. If this distinct pharmacology and GABAB receptor distribution also extends to other CNS structures, such differences could provide development of selective drugs to act at these multiple sites.  (+info)

A role for the bed nucleus of the stria terminalis, but not the amygdala, in the effects of corticotropin-releasing factor on stress-induced reinstatement of cocaine seeking. (4/387)

We have shown that intracerebroventricular administration of the corticotropin-releasing factor (CRF) receptor antagonist D-Phe CRF(12-41), blocks footshock-induced reinstatement of drug seeking in cocaine-trained rats. We now report that D-Phe acts in the bed nucleus of the stria terminalis (BNST), and not in the amygdala, to block footshock-induced reinstatement of cocaine seeking. In addition, CRF injections in the BNST, and not in the amygdala, are sufficient to reinstate cocaine seeking. Rats were trained to self-administer cocaine intravenously on a fixed ratio (FR-1) schedule of reinforcement. After 5 drug-free days, animals were returned to the self-administration chambers and given daily extinction and reinstatement test sessions. To test the effects of D-Phe CRF(12-41) on stress-induced reinstatement, rats were pretreated with vehicle or D-Phe in either the BNST (10 or 50 ng per side) or amygdala (50 or 500 ng per side) before being exposed to 15 min of intermittent footshock stress. To test whether injections of CRF itself could induce reinstatement, rats were given vehicle or CRF in either the BNST (100 or 300 ng per side) or amygdala (300 ng per side) 15 min before the session. Injections of D-Phe into the BNST completely blocked footshock-induced reinstatement of cocaine seeking; injections of CRF itself in this structure induced reinstatement. Injections of these compounds into the amygdala were without effect. These findings suggest that activation of CRF receptors in the BNST, but not in the amygdala, is critical for footshock-induced reinstatement of cocaine seeking.  (+info)

Evidence that brain-derived neurotrophic factor from presynaptic nerve terminals regulates the phenotype of calbindin-containing neurons in the lateral septum. (5/387)

Brain-derived neurotrophic factor (BDNF) is transported anterogradely in neurons of the CNS and can be released by activity-dependent mechanisms to regulate synaptic plasticity. However, few neural networks have been identified in which the production, transport, and effects of BDNF on postsynaptic neurons can be analyzed in detail. In this study, we have identified such a network. BDNF has been colocalized by immunocytochemistry with tyrosine hydroxylase (TH) in nerve fibers and nerve terminals within the lateral septum of rats. BDNF-containing nerve fibers terminate on a population of calbindin-containing neurons in lateral septum that contain TrkB, the high-affinity receptor for BDNF. Overexpression of BDNF in noradrenergic neurons increased levels of calbindin in septum, as well as in whole-brain lysates. Septal levels of calbindin and BDNF partially decreased after unilateral lesions of the medial forebrain bundle (MFB), induced with 6-hydroxydopamine, a treatment that abolished TH staining. These data suggest that BDNF is anterogradely transported within the MFB in catecholaminergic neurons arising from brainstem nuclei. To determine whether BDNF affects the production of calbindin in lateral septal neurons directly, we tested the effects of BDNF on cultures of septal neurons from embryonic day 16-17 rats. BDNF promoted the expression of calbindin, as well as the arborization of calbindin-containing neurons, but BDNF had no effect on cell division or survival. Together, these results suggest that BDNF, anterogradely transported in catecholaminergic neurons, regulates calbindin expression within the lateral septum.  (+info)

Increase of dialysate dopamine in the bed nucleus of stria terminalis by clozapine and related neuroleptics. (6/387)

Neuroleptics are known to stimulate dopamine release in neostriatal terminal areas. In the present study, we have investigated by brain microdialysis in freely moving rats the effect of typical and atypical neuroleptics on dopamine transmission in the bed nucleus of stria terminalis, a dopamine terminal area belonging to the limbic system and recently assigned the so-called extended amygdala. Mean basal dialysate dopamine values were 14.3 f moles/20 microliters sample. Dopamine output in dialysates was increased dose-dependently by clozapine (max + 158%, 298%, and 461% of basal at 5, 10, and 20 mg/kg i.p., respectively), risperidone (max + 115% and 221% of basal at 1 and 3 mg/kg i.p., respectively), olanzapine (max + 138% and 235% of basal at 3 and 6 mg/kg i.p., respectively), BIMG 80 (max + 64% and 164% of basal at 3 and 5 mg/kg i.p., respectively), amperozide (max + 110% and 194% of basal at 3 and 6 mg/kg i.p., respectively). The selective dopamine D4 antagonist L-745,870 increased dialysate dopamine but at rather high doses and not as effectively as clozapine (max + 32%, 89%, and 130% of basal at 2.7, 5.4, and 10.8 mg/kg i.p., respectively). The typical neuroleptic haloperidol (0.1 and 0.5 mg/kg s.c.) and the selective D2 antagonist raclopride (0.14, 0.56, and 2.1 mg/kg s.c.), the serotonergic 5-HT2 antagonist ritanserin (0.5 and 1.5 mg/kg i.p.), and the adrenergic alpha 1 antagonist prazosin (0.91 and 2.73 mg/kg i.p.) did not affect dialysate dopamine in the bed nucleus of stria terminalis. Saline (1 ml/kg s.c. or 3 ml/kg i.p.) did not modify dialysate dopamine. Therefore, atypical neuroleptics share the ability of stimulating dopamine transmission in the bed nucleus of stria terminalis, but this property is not mimicked by any of the drug tested that selectively act on individual receptors among those that are affected by atypical neuroleptics. These observations raise the possibility that the property of increasing dopamine transmission in the bed nucleus of stria terminalis is the result of combined blockade of dopamine, serotonin, and noradrenaline receptors and that might be predictive of an atypical neuroleptic profile.  (+info)

Behavioural impact of intraseptally released vasopressin and oxytocin in rats. (7/387)

The two nonapeptides arginine vasopressin and oxytocin are not only secreted from the neurohypophysis into the general circulation but are also released intracerebrally. Our recent research has focused on the release patterns and effects of oxytocin and vasopressin in brain areas, such as the septum and hypothalamus, that are thought to be involved in the regulation of (1) behavioural responses and (2) responses of the hypothalamo-neurohypophysial system (HNS) to stressor exposure in rats. The results demonstrate that combined physical and emotional stress (induced by exposure to forced swimming) selectively triggers the release of vasopressin within all brain areas under study but not into the general circulation. Under emotional stress conditions (induced by exposure to the 'social defeat' procedure), however, oxytocin rather than vasopressin release increased within the hypothalamus and septum. Experiments aimed at revealing the neuroendocrine and behavioural relevance of the local nonapeptide release provided evidence for an involvement of vasopressin in the regulation of HNS activity (within the hypothalamus) and, moreover, in acute stress-coping strategies, anxiety-related behaviour and learning and memory processes (within the septum). The observed dissociation between central and peripheral nonapeptide release not only supports the hypothesis that plasma vasopressin and oxytocin concentrations do not necessarily reflect central release patterns but also suggests vasopressin and oxytocin neurones are able to independently release their nonapeptide from different parts of their neuronal surface (e.g. from somata/dendrites vs. axon terminals). This remarkable regulatory capacity provides the basis for an differential involvement of vasopressin, and probably also oxytocin, in the co-ordination of neuroendocrine activity, emotionality and cognition at different brain levels to ensure an appropriate behavioural response of the organism to stressful stimuli.  (+info)

Cholinergic excitation of septohippocampal GABA but not cholinergic neurons: implications for learning and memory. (8/387)

The medial septum/diagonal band (MSDB), which gives rise to the septohippocampal pathway, is a critical locus for the mnemonic effects of muscarinic drugs. Infusion of muscarinic cholinergic agonists into the MSDB enhance learning and memory processes both in young and aged rats and produce a continuous theta rhythm in the hippocampus. Intraseptal muscarinic agonists also alleviate the amnesic syndrome produced by systemic administration of muscarinic receptor antagonists. It has been presumed, but not proven, that the cellular mechanisms underlying the effects of muscarinic agonists in the MSDB involve an excitation of septohippocampal cholinergic neurons and a subsequent increase in acetylcholine (ACh) release in the hippocampus. Using a novel fluorescent labeling technique to selectively visualize live septohippocampal cholinergic neurons in rat brain slices, we have found that muscarinic agonists do not excite septohippocampal cholinergic neurons, instead they inhibit a subpopulation of cholinergic neurons. In contrast, unlabeled neurons, confirmed to be noncholinergic, septohippocampal GABA-type neurons using retrograde marking and double-labeling techniques, are profoundly excited by muscarine. Thus, the cognition-enhancing effects of muscarinic drugs in the MSDB cannot be attributed to an increase in hippocampal ACh release. Instead, disinhibitory mechanisms, caused by increased impulse flow in the septohippocampal GABAergic pathway, may underlie the cognition-enhancing effects of muscarinic agonists.  (+info)