Selenoprotein W is a glutathione-dependent antioxidant in vivo. (1/26)

The function of selenoprotein W (Se-W) was investigated by cloning the corresponding cDNA from mouse brain and expressing it in CHO cells and H1299 human lung cancer cells. Overexpression of Se-W markedly reduced the sensitivity of both cell lines to H2O2 cytotoxicity. The intracellular peroxide concentration of the transfected cells was lower than that of the parental cells in the absence or presence of extracellular H2O2. The resistance to oxidative stress conferred by Se-W was dependent on glutathione. Expression of Se-W mutants in which selenocysteine-13 or cysteine-37 was replaced by serine did not confer resistance to H2O2, implicating these residues in the antioxidant activity of Se-W in vivo.  (+info)

Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. (2/26)

Known eukaryotic selenocysteine (Sec)-containing proteins are animal proteins, whereas selenoproteins have not been found in yeast and plants. Surprisingly, we detected selenoproteins in a member of the plant kingdom, Chlamydomonas reinhardtii, and directly identified two of them as phospholipid hydroperoxide glutathione peroxidase and selenoprotein W homologs. Moreover, a selenocysteyl-tRNA was isolated that recognized specifically the Sec codon UGA. Subsequent gene cloning and bioinformatics analyses identified eight additional selenoproteins, including methionine-S-sulfoxide reductase, a selenoprotein specific to Chlamydomonas: Chlamydomonas selenoprotein genes contained selenocysteine insertion sequence (SECIS) elements that were similar, but not identical, to those of animals. These SECIS elements could direct selenoprotein synthesis in mammalian cells, indicating a common origin of plant and animal Sec insertion systems. We found that selenium is required for optimal growth of Chlamydomonas: Finally, evolutionary analyses suggested that selenoproteins present in Chlamydomonas and animals evolved early, and were independently lost in land plants, yeast and some animals.  (+info)

Gene structure and tissue expression of human selenoprotein W, SEPW1, and identification of a retroprocessed pseudogene, SEPW1P. (3/26)

We have determined that the human SEPW1 (selenoprotein W) gene maps to chromosome 19q13.3, spans approximately 6.3 kb and comprises six exons, in contrast to the previously published five exons. The gene lacks canonical TATA and CAAT boxes, but has numerous Sp1 consensus binding sites upstream of multiple transcription start sites. SEPW1 is expressed in all of the 22 tissues assayed, and shows highest expression in skeletal muscle and heart. Additionally, we have also identified a retroprocessed SEPW1 pseudogene, SEPW1P, which maps to chromosome 1p34-35.  (+info)

Different distributions of selenoprotein W and thioredoxin during postnatal brain development and embryogenesis. (4/26)

Whereas the levels of other selenoproteins in the brain decrease when selenium is deficient, the level of selenoprotein W (Se-W) is maintained, suggesting that it has a critical role in the brain. Previously, we reported that Se-W is a GSH-dependent antioxidant [Jeong et al. (2002)]. In this study, the expression of Se-W and thioredoxin (Trx) in the brain and during embrynic development was analyzed by an in situ hybridization technique. Se-W mRNA was highly expressed in the cortex, dentate gyrus, and hippocampus of postnatal rat brains, and in the spinal cord and brain of developing embryos. In contrast, Trx mRNA was highly expressed in the cerebellum, olfactory bulb, and dentate gyrus of postnatal rat brains, and in the liver, telencephalon, and back muscle of developing embryos. Thus these two antioxidant proteins have different and non-overlapping expression patterns. The distribution of Se-W suggests that it plays an important role as an antioxidant in the developing brain and embryo.  (+info)

Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA. (5/26)

Selenocysteine (Sec) is the 21st amino acid in the genetic code. Its tRNA is variably methylated on the 2'-O-hydroxyl site of the ribosyl moiety at position 34 (Um34). Herein, we identified a role of Um34 in regulating the expression of some, but not all, selenoproteins. A strain of knock-out transgenic mice was generated, wherein the Sec tRNA gene was replaced with either wild type or mutant Sec tRNA transgenes. The mutant transgene yielded a tRNA that lacked two base modifications, N(6)-isopentenyladenosine at position 37 (i(6)A37) and Um34. Several selenoproteins, including glutathione peroxidases 1 and 3, SelR, and SelT, were not detected in mice rescued with the mutant transgene, whereas other selenoproteins, including thioredoxin reductases 1 and 3 and glutathione peroxidase 4, were expressed in normal or reduced levels. Northern blot analysis suggested that other selenoproteins (e.g. SelW) were also poorly expressed. This novel regulation of protein expression occurred at the level of translation and manifested a tissue-specific pattern. The available data suggest that the Um34 modification has greater influence than the i(6)A37 modification in regulating the expression of various mammalian selenoproteins and Um34 is required for synthesis of several members of this protein class. Many proteins that were poorly rescued appear to be involved in responses to stress, and their expression is also highly dependent on selenium in the diet. Furthermore, their mRNA levels are regulated by selenium and are subject to nonsense-mediated decay. Overall, this study described a novel mechanism of regulation of protein expression by tRNA modification that is in turn regulated by levels of the trace element, selenium.  (+info)

Effects of Se-depletion on glutathione peroxidase and selenoprotein W gene expression in the colon. (6/26)

Selenium (Se)-containing proteins have important roles in protecting cells from oxidative damage. This work investigated the effects of Se-depletion on the expression of the genes encoding selenoproteins in colonic mucosa from rats fed diets of different Se content and in human intestinal Caco-2 cells grown in Se-adequate or Se-depleted culture medium. Se-depletion produced statistically significant (P<0.05) falls in glutathione peroxidase (GPX) 1 mRNA (60-83%) and selenoprotein W mRNA (73%) levels, a small but significant fall in GPX4 mRNA (17-25%) but no significant change in GPX2. The data show that SelW expression in the colon is highly sensitive to Se-depletion.  (+info)

Two major branches of anti-cadmium defense in the mouse: MTF-1/metallothioneins and glutathione. (7/26)

Metal-responsive transcription factor 1 (MTF-1) regulates expression of its target genes in response to various stress conditions, notably heavy metal load, via binding to metal response elements (MREs) in the respective enhancer/promoter regions. Furthermore, it serves a vital function in embryonic liver development. However, targeted deletion of Mtf1 in the liver after birth is no longer lethal. For this study, Mtf1 conditional knockout mice and control littermates were both mock- or cadmium-treated and liver-specific transcription was analyzed. Besides the well-characterized metallothionein genes, several new MTF-1 target genes with MRE motifs in the promoter region emerged. MTF-1 is required for the basal expression of selenoprotein W, muscle 1 gene (Sepw1) that encodes a glutathione-binding and putative antioxidant protein, supporting a role of MTF-1 in the oxidative stress response. Furthermore, MTF-1 mediates the cadmium-induced expression of N-myc downstream regulated gene 1 (Ndrg1), which is induced by several stress conditions and is overexpressed in many cancers. MTF-1 is also involved in the cadmium response of cysteine- and glycine-rich protein 1 gene (Csrp1), which is implicated in cytoskeletal organization. In contrast, MTF-1 represses the basal expression of Slc39a10, a putative zinc transporter. In a pathway independent of MTF-1, cadmium also induced the transcription of genes involved in the synthesis and regeneration of glutathione, a cadmium-binding antioxidant. These data provide strong evidence for two major branches of cellular anti-cadmium defense, one via MTF-1 and its target genes, notably metallothioneins, the other via glutathione, with an apparent overlap in selenoprotein W.  (+info)

Solution structure of selenoprotein W and NMR analysis of its interaction with 14-3-3 proteins. (8/26)

Selenium is a trace element with significant biomedical potential. It is essential in mammals due to its occurrence in several proteins in the form of selenocysteine (Sec). One of the most abundant mammalian Sec-containing proteins is selenoprotein W (SelW). This protein of unknown function has a broad expression pattern and contains a candidate CXXU (where U represents Sec) redox motif. Here, we report the solution structure of the Sec13-->Cys variant of mouse SelW determined through high resolution NMR spectroscopy. The protein has a thioredoxin-like fold with the CXXU motif located in an exposed loop similarly to the redox-active site in thioredoxin. Protein dynamics studies revealed the rigidity of the protein backbone and mobility of two external loops and suggested a role of these loops in interaction with SelW partners. Molecular modeling of structures of other members of the Rdx family based on the SelW structure identified new conserved features in these proteins, including an aromatic cluster and interacting loops. Our previous study suggested an interaction between SelW and 14-3-3 proteins. In the present work, with the aid of NMR spectroscopy, we demonstrated specificity of this interaction and identified mobile loops in SelW as interacting surfaces. This finding suggests that 14-3-3 are redox-regulated proteins.  (+info)