Food-web models predict species abundances in response to habitat change. (1/32)

Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss.  (+info)

Carnivorous syndrome in Asian pitcher plants of the genus Nepenthes. (2/32)

BACKGROUND AND AIMS: Pitcher plants Nepenthes alata and N. mirabilis are carnivorous species with leaves composed of a photosynthetic part (lamina) and a pitcher trap. This characteristic permitted direct physiological and anatomical comparison between these two distinct parts of the leaves to determine those features involved in the 'carnivorous syndrome', which include low net photosynthetic assimilation rate (A(N)) and low photosynthetic nitrogen use efficiency (PNUE). METHODS: Photosynthetic rate (A(N)) and respiration rate (R(d)) were measured gasometrically, chlorophyll concentration was determined spectrophotometrically and nitrogen concentration was determined using a CHN elemental analyser in lamina and trap separately. Anatomy of N. alata was observed using light, fluorescence and transmission electron microscopy. A(N), foliar nitrogen and chlorophyll concentration were also compared with values for other carnivorous plant species (genera Sarracenia, Drosera) that combine both autotrophic and carnivorous functions into the same physical organ. KEY RESULTS: It was found that the A(N) in Nepenthes lamina was low and PNUE was only slightly higher or similar in comparison with other carnivorous plants. It was not observed that the pitcher had a higher R(d) than the lamina, but A(N) in the pitcher was significantly lower than in the lamina. Nepenthes possesses a cluster of characters that could result in reduced photosynthesis in the pitcher and be responsible for carnivorous function of the leaf: replacement of chlorophyll-containing cells with digestive glands, low chlorophyll and nitrogen concentration, compact mesophyll with a small portion of intercellular spaces, absence of palisade parenchyma and low stomatal density. CONCLUSION: Low photosynthetic capacity, nitrogen efficiency, chlorophyll and nitrogen concentration of Nepenthes pitchers was found, together with a set of features that characterized the carnivorous syndrome. Dual use of leaves for photosynthesis and nutrient gain can decrease photosynthetic efficiency in carnivorous plants in general.  (+info)

Longevity, lignin content and construction cost of the assimilatory organs of Nepenthes species. (3/32)

 (+info)

Nectar, not colour, may lure insects to their death. (4/32)

 (+info)

Feeding enhances photosynthetic efficiency in the carnivorous pitcher plant Nepenthes talangensis. (5/32)

 (+info)

The pitcher plant Sarracenia purpurea can directly acquire organic nitrogen and short-circuit the inorganic nitrogen cycle. (6/32)

 (+info)

Adaptive significance and ontogenetic variability of the waxy zone in Nepenthes rafflesiana. (7/32)

 (+info)

The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities. (8/32)

 (+info)