Skeletal muscle type ryanodine receptor is involved in calcium signaling in human B lymphocytes. (1/2439)

The regulation of intracellular free Ca2+ concentration ([Ca2+]i) in B cells remains poorly understood and is presently explained almost solely by inositol 1,4,5-triphosphate (IP3)-mediated Ca2+ release, followed by activation of a store-operated channel mechanism. In fact, there are reports indicating that IP3 production does not always correlate with the magnitude of Ca2+ release. We demonstrate here that human B cells express a ryanodine receptor (RYR) that functions as a Ca2+ release channel during the B cell antigen receptor (BCR)-stimulated Ca2+ signaling process. Immunoblotting studies showed that both human primary CD19(+) B and DAKIKI cells express a 565-kDa immunoreactive protein that is indistinguishable in molecular size and immunoreactivity from the RYR. Selective reverse transcription-polymerase chain reaction, restriction fragment length polymorphism, and sequencing of cloned cDNA indicated that the major isoform of the RYR expressed in primary CD19(+) B and DAKIKI cells is identical to the skeletal muscle type (RYR1). Saturation analysis of [3H]ryanodine binding yielded Bmax = 150 fmol/mg of protein and Kd = 110 nM in DAKIKI cells. In fluo-3-loaded CD19(+) B and DAKIKI cells, 4-chloro-m-cresol, a potent activator of Ca2+ release mediated by the ryanodine-sensitive Ca2+ release channel, induced Ca2+ release in a dose-dependent and ryanodine-sensitive fashion. Furthermore, BCR-mediated Ca2+ release in CD19(+) B cells was significantly altered by 4-chloro-m-cresol and ryanodine. These results indicate that RYR1 functions as a Ca2+ release channel during BCR-stimulated Ca2+ signaling and suggest that complex Ca2+ signals that control the cellular activities of B cells may be generated by cooperation of the IP3 receptor and RYR1.  (+info)

Characterization of elementary Ca2+ release signals in NGF-differentiated PC12 cells and hippocampal neurons. (2/2439)

Elementary Ca2+ release signals in nerve growth factor- (NGF-) differentiated PC12 cells and hippocampal neurons, functionally analogous to the "Ca2+ sparks" and "Ca2+ puffs" identified in other cell types, were characterized by confocal microscopy. They either occurred spontaneously or could be activated by caffeine and metabotropic agonists. The release events were dissimilar to the sparks and puffs described so far, as many arose from clusters of both ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (InsP3Rs). Increasing either the stimulus strength or loading of the intracellular stores enhanced the frequency of and coupling between elementary release sites and evoked global Ca2+ signals. In the PC12 cells, the elementary Ca2+ release preferentially occurred around the branch points. Spatio-temporal recruitment of such elementary release events may regulate neuronal activities.  (+info)

Mutation screening of the RYR1 gene and identification of two novel mutations in Italian malignant hyperthermia families. (3/2439)

Point mutations in the ryanodine receptor (RYR1) gene are associated with malignant hyperthermia, an autosomal dominant disorder triggered in susceptible people (MHS) by volatile anaesthetics and depolarising skeletal muscle relaxants. To date, 17 missense point mutations have been identified in the human RYR1 gene by screening of the cDNA obtained from muscle biopsies. Here we report single strand conformation polymorphism (SSCP) screening for nine of the most frequent RYR1 mutations using genomic DNA isolated from MHS patients. In addition, the Argl63Cys mutation was analysed by restriction enzyme digestion. We analysed 57 unrelated patients and detected seven of the known RYR1 point mutations. Furthermore, we found a new mutation, Arg2454His, segregating with the MHS phenotype in a large pedigree and a novel amino acid substitution at position 2436 in another patient, indicating a 15.8% frequency of these mutations in Italian patients. A new polymorphic site in intron 16 that causes the substitution of a G at position -7 with a C residue was identified.  (+info)

Local control models of cardiac excitation-contraction coupling. A possible role for allosteric interactions between ryanodine receptors. (4/2439)

In cardiac muscle, release of activator calcium from the sarcoplasmic reticulum occurs by calcium- induced calcium release through ryanodine receptors (RyRs), which are clustered in a dense, regular, two-dimensional lattice array at the diad junction. We simulated numerically the stochastic dynamics of RyRs and L-type sarcolemmal calcium channels interacting via calcium nano-domains in the junctional cleft. Four putative RyR gating schemes based on single-channel measurements in lipid bilayers all failed to give stable excitation-contraction coupling, due either to insufficiently strong inactivation to terminate locally regenerative calcium-induced calcium release or insufficient cooperativity to discriminate against RyR activation by background calcium. If the ryanodine receptor was represented, instead, by a phenomenological four-state gating scheme, with channel opening resulting from simultaneous binding of two Ca2+ ions, and either calcium-dependent or activation-linked inactivation, the simulations gave a good semiquantitative accounting for the macroscopic features of excitation-contraction coupling. It was possible to restore stability to a model based on a bilayer-derived gating scheme, by introducing allosteric interactions between nearest-neighbor RyRs so as to stabilize the inactivated state and produce cooperativity among calcium binding sites on different RyRs. Such allosteric coupling between RyRs may be a function of the foot process and lattice array, explaining their conservation during evolution.  (+info)

Suramin and suramin analogs activate skeletal muscle ryanodine receptor via a calmodulin binding site. (5/2439)

Contraction of skeletal muscle is triggered by the rapid release of Ca2+ from the sarcoplasmic reticulum via the ryanodine receptor/calcium-release channel. The trypanocidal drug suramin is an efficient activator of the ryanodine receptor. Here, we used high-affinity [3H]ryanodine binding to sarcoplasmic reticulum from rabbit skeletal muscle to screen for more potent analogs of suramin. This approach resulted in the identification of NF307, which accelerates the association rate of [3H]ryanodine binding with an EC50 = 91 +/- 7 microM at 0.19 microM calculated free Ca2+. In single-channel recordings with the purified ryanodine receptor, NF307 increased mean open probability at 0.6 microM Ca2+ from 0.020 +/- 0.006 to 0.53 +/- 0.07 with no effect on current amplitude and unitary conductance. Like caffeine, NF307 exerts a very pronounced Ca2+-sensitizing effect (EC50 of Ca2+ shifted approximately 10-fold by saturating NF307 concentrations). Conversely, increasing concentrations of free Ca2+ sensitized the receptor for NF307 (EC50 = 14.6 +/- 3.5 microM at 0.82 microM estimated free Ca2+). The effects of NF307 and caffeine on [3H]ryanodine binding were additive, irrespective of the Ca2+ concentration. In contrast, the effects of calmodulin, which activates and inhibits the ryanodine receptor in the absence and presence of Ca2+, respectively, and of NF307 were mutually antagonistic. If the purified ryanodine receptor was prebound to a calmodulin-Sepharose matrix, 100 microM NF307 and 300 microM suramin eluted the purified ryanodine receptor to an extent that was comparable to the effect of 10 microM calmodulin. We conclude that NF307 and suramin interact directly with a calmodulin binding domain of the ryanodine receptor. Because of its potent calcium-sensitizing effect, NF307 may represent a lead compound in the search of synthetic ryanodine receptor ligands.  (+info)

Cellular mechanisms of altered contractility in the hypertrophied heart: big hearts, big sparks. (6/2439)

To investigate the cellular mechanisms for altered Ca2+ homeostasis and contractility in cardiac hypertrophy, we measured whole-cell L-type Ca2+ currents (ICa,L), whole-cell Ca2+ transients ([Ca2+]i), and Ca2+ sparks in ventricular cells from 6-month-old spontaneously hypertensive rats (SHRs) and from age- and sex-matched Wistar-Kyoto and Sprague-Dawley control rats. By echocardiography, SHR hearts had cardiac hypertrophy and enhanced contractility (increased fractional shortening) and no signs of heart failure. SHR cells had a voltage-dependent increase in peak [Ca2+]i amplitude (at 0 mV, 1330+/-62 nmol/L [SHRs] versus 836+/-48 nmol/L [controls], P<0.05) that was not associated with changes in ICa,L density or kinetics, resting [Ca2+]i, or Ca2+ content of the sarcoplasmic reticulum (SR). SHR cells had increased time of relaxation. Ca2+ sparks from SHR cells had larger average amplitudes (173+/-192 nmol/L [SHRs] versus 109+/-64 nmol/L [control]; P<0.05), which was due to redistribution of Ca2+ sparks to a larger amplitude population. This change in Ca2+ spark amplitude distribution was not associated with any change in the density of ryanodine receptors, calsequestrin, junctin, triadin 1, Ca2+-ATPase, or phospholamban. Therefore, SHRs with cardiac hypertrophy have increased contractility, [Ca2+]i amplitude, time to relaxation, and average Ca2+ spark amplitude ("big sparks"). Importantly, big sparks occurred without alteration in the trigger for SR Ca2+ release (ICa,L), SR Ca2+ content, or the expression of several SR Ca2+-cycling proteins. Thus, cardiac hypertrophy in SHRs is linked with an alteration in the coupling of Ca2+ entry through L-type Ca2+ channels and the release of Ca2+ from the SR, leading to big sparks and enhanced contractility. Alterations in the microdomain between L-type Ca2+ channels and SR Ca2+ release channels may underlie the changes in Ca2+ homeostasis observed in cardiac hypertrophy. Modulation of SR Ca2+ release may provide a new therapeutic strategy for cardiac hypertrophy and for its progression to heart failure and sudden death.  (+info)

Cross-coupling between voltage-dependent Ca2+ channels and ryanodine receptors in developing ascidian muscle blastomeres. (7/2439)

1. Ascidian blastomeres of muscle lineage express voltage-dependent calcium channels (VDCCs) despite isolation and cleavage arrest. Taking advantage of these large developing cells, developmental changes in functional relations between VDCC currents and intracellular Ca2+ stores were studied. 2. Inactivation of ascidian VDCCs is Ca2+ dependent, as demonstrated by two pieces of evidence: (1) a bell-shaped relationship between prepulse voltage and amplitude during the test pulse in Ca2+, but not in Ba2+, and (2) the decay kinetics of Ca2+ currents (ICa) obtained as the size of tail currents. 3. During replacement in the external solution of Ca2+ with Ba2+, the inward current appeared biphasic: it showed rapid decay followed by recovery and slow decay. This current profile was most evident in the mixed bath solution (2 % Ca2+ and 98 % Ba2+, abbreviated to '2Ca/98Ba'). 4. The biphasic profile of I2Ca/98Ba was significantly attenuated in caffeine and in ryanodine, indicating that Ca2+ release is involved in shaping the current kinetics of VDCCs. After washing out the caffeine, the biphasic pattern was reproducibly restored by depolarizing the membrane in calcium-rich solution, which is expected to refill the internal Ca2+ stores. 5. The inhibitors of endoplasmic reticulum (ER) Ca2+-ATPase (SERCAs) cyclopiazonic acid (CPA) and thapsigargin facilitated elimination of the biphasic profile with repetitive depolarization. 6. At a stage earlier than 36 h after fertilization, the biphasic profile of I2Ca/98Ba was not observed. However, caffeine induced a remarkable decrease in the amplitude of I2Ca/98Ba and this suppression was blocked by microinjection of the Ca2+ chelator BAPTA, showing the presence of caffeine-sensitive Ca2+ stores at this stage. 7. Electron microscopic observation shows that sarcoplasmic membranes (SR) arrange closer to the sarcolemma with maturation, suggesting that the formation of the ultrastructural machinery underlies development of the cross-coupling between VDCCs and Ca2+ stores.  (+info)

Effects of tetracaine on sarcoplasmic calcium release in mammalian skeletal muscle fibres. (8/2439)

1. Single muscle fibres were dissociated enzymatically from the extensor digitorum communis muscle of rats. The fibres were mounted into a double Vaseline gap experimental chamber and the events in excitation-contraction coupling were studied under voltage clamp conditions in the presence and absence of the local anaesthetic tetracaine. 2. Changes in intracellular calcium concentration ([Ca2+]i) were monitored using the calcium sensitive dyes antipyrylazo III and fura-2 and the rate of calcium release (Rrel) from the sarcoplasmic reticulum (SR) was calculated. Tetracaine decreased the maximal attained [Ca2+]i and suppressed, in a dose-dependent manner, both the early peak and the steady level of Rrel in the voltage range examined. 3. The concentration dependence of the effects on the two kinetic components of Rrel were almost identical with a half-effective concentration (K50) of 70 and 71 microM and a Hill coefficient (nH) of 2.7 and 2.3 for the peak and the steady level, respectively. Furthermore, the drug did not alter the peak to steady level ratio up to a concentration (50 microM) that caused a 35 +/- 5 % reduction in calcium release. Higher concentrations did suppress the ratio but the degree of suppression was voltage independent. 4. Tetracaine (50 microM) neither influenced the total available intramembrane charge nor altered its membrane potential dependence. It shifted the transfer function, the normalized SR permeability versus normalized charge to the right, indicating that similar charge transfer caused a smaller increase in SR permeability. 5. To explore the site of action of tetracaine further the ryanodine receptor (RyR) calcium release channel of the SR was purified and reconstituted into planar lipid bilayers. The reconstituted channel had a conductance of 511 +/- 14 pS (n = 8) in symmetric 250 mM KCl that was not affected by tetracaine. Tetracaine decreased the open probability of the channel in a concentration-dependent manner with K50 = 68 microM and nH = 1.5. 6. These experiments show that tetracaine suppresses SR calcium release in enzymatic isolated mammalian skeletal muscle fibres. This effect is due, presumably, to the decreased open probability of the RyR in the presence of the drug. Since both the inactivating peak and the steady level of Rrel were equally affected by tetracaine, our observations suggest that there is a tight coupling between these kinetic components of SR calcium release in mammalian skeletal muscle.  (+info)