Phenylacetic and phenylpropionic acids do not affect xylan degradation by Ruminococcus albus. (1/64)

Since the addition of either ruminal fluid or a combination of phenylacetic and phenylpropionic acids (PAA/PPA) has previously been shown to dramatically improve cellulose degradation and growth of Ruminococcus albus, it was of interest to determine the effects of these additives on xylan-grown cultures. Although cell-bound xylanase activity increased when either PAA/PPA or ruminal fluid was added to the growth medium, total xylanase did not change, and neither of these supplements affected the growth or xylan-degrading capacity of R. albus 8. Similarly, neither PAA/PPA nor ruminal fluid affected xylan degradation by multiple strains of R. albus when xylan prepared from oat spelts was used as a carbohydrate source. These results show that the xylanolytic potential of R. albus is not conditional on the availability of PAA/PPA or other components of ruminal fluid.  (+info)

Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. (2/64)

The cellulolytic bacterium Ruminococcus albus 8 adheres tightly to cellulose, but the molecular biology underpinning this process is not well characterized. Subtractive enrichment procedures were used to isolate mutants of R. albus 8 that are defective in adhesion to cellulose. Adhesion of the mutant strains was reduced 50% compared to that observed with the wild-type strain, and cellulose solubilization was also shown to be slower in these mutant strains, suggesting that bacterial adhesion and cellulose solubilization are inextricably linked. Two-dimensional polyacrylamide gel electrophoresis showed that all three mutants studied were impaired in the production of two high-molecular-mass, cell-bound polypeptides when they were cultured with either cellobiose or cellulose. The identities of these proteins were determined by a combination of mass spectrometry methods and genome sequence data for R. albus 8. One of the polypeptides is a family 9 glycoside hydrolase (Cel9B), and the other is a family 48 glycoside hydrolase (Cel48A). Both Cel9B and Cel48A possess a modular architecture, Cel9B possesses features characteristic of the B(2) (or theme D) group of family 9 glycoside hydrolases, and Cel48A is structurally similar to the processive endocellulases CelF and CelS from Clostridium cellulolyticum and Clostridium thermocellum, respectively. Both Cel9B and Cel48A could be recovered by cellulose affinity procedures, but neither Cel9B nor Cel48A contains a dockerin, suggesting that these polypeptides are retained on the bacterial cell surface, and recovery by cellulose affinity procedures did not involve a clostridium-like cellulosome complex. Instead, both proteins possess a single copy of a novel X module with an unknown function at the C terminus. Such X modules are also present in several other R. albus glycoside hydrolases and are phylogentically distinct from the fibronectin III-like and X modules identified so far in other cellulolytic bacteria.  (+info)

ScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome. (3/64)

A new gene, designated scaC and encoding a protein carrying a single cohesin, was identified in the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 as part of a gene cluster that also codes for the cellulosome structural components ScaA and ScaB. Phylogenetic analysis showed that the sequence of the ScaC cohesin is distinct from the sequences of other cohesins, including the sequences of R. flavefaciens ScaA and ScaB. The scaC gene product also includes at its C terminus a dockerin module that closely resembles those found in R. flavefaciens enzymes that bind to the cohesins of the primary ScaA scaffoldin. The putative cohesin domain and the C-terminal dockerin module were cloned and overexpressed in Escherichia coli as His(6)-tagged products (ScaC-Coh and ScaC-Doc, respectively). Affinity probing of protein extracts of R. flavefaciens 17 separated in one-dimensional and two-dimensional gels with recombinant cohesins from ScaC and ScaA revealed that two distinct subsets of native proteins interact with ScaC-Coh and ScaA-Coh. Furthermore, ScaC-Coh failed to interact with the recombinant dockerin module from the enzyme EndB that is recognized by ScaA cohesins. On the other hand, ScaC-Doc was shown to interact specifically with the recombinant cohesin domain from ScaA, and the ScaA-Coh probe was shown to interact with a native 29-kDa protein spot identified as ScaC by matrix-assisted laser desorption ionization-time of flight mass spectrometry. These results suggest that ScaC plays the role of an adaptor scaffoldin that is bound to ScaA via the ScaC dockerin module, which, via the distinctive ScaC cohesin, expands the range of proteins that can bind to the ScaA-based enzyme complex.  (+info)

Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens. (4/64)

An approximately 32-kDa protein (albusin B) that inhibited growth of Ruminococcus flavefaciens FD-1 was isolated from culture supernatants of Ruminococcus albus 7. Traditional cloning and gene-walking PCR techniques revealed an open reading frame (albB) encoding a protein with a predicted molecular mass of 32,168 Da. A BLAST search revealed two homologs of AlbB from the unfinished genome of R. albus 8 and moderate similarity to LlpA, a recently described 30-kDa bacteriocin from Pseudomonas sp. strain BW11M1.  (+info)

A novel family of carbohydrate-binding modules identified with Ruminococcus albus proteins. (5/64)

We recently showed that some of the enzymes underpinning cellulose solubilization by Ruminococcus albus 8 lack the conventional type of dockerin module characteristic of cellulosomal proteins and instead, bear an "X" domain of unknown function at their C-termini. We have now subcloned and expressed six X domains and showed that five of them bind to xylan, chitin, microcrystalline and phosphoric-acid swollen cellulose, as well as more heterogenous substrates such as alfalfa cell walls, banana stem and wheat straw. The X domain that did not bind to these substrates was derived from a family-5 glycoside hydrolase (Cel5G), which possesses two X domains in tandem. Whereas the internal X domain failed to bind to the substrates, the recombinant dyad exhibited markedly enhanced binding relative to that observed for the C-terminal X domain alone. The evidence supports a distinctive carbohydrate-binding role of broad specificity for this type of domain, and we propose a novel family (designated family 37) of carbohydrate-binding modules that appear to be peculiar to R. albus.  (+info)

Cloning of the Ruminococcus albus cel5D and cel9A genes encoding dockerin module-containing endoglucanases and expression of cel5D in Escherichia coli. (6/64)

An EcoRI chromosomal DNA fragment of Ruminococcus albus F-40 that conferred endoglucanase activity on Escherichia coli was cloned. An open reading frame (ORF1) and another incomplete reading frame (ORF2) were found in the EcoRI fragment. The ORF2 was completed using inverse PCR genome walking technique. ORF1 and ORF2, which confront each other, encoded cellulases belonging to families 5 and 9 of the glycoside hydrolases and were designated cel5D and cel9A respectively. The cel5D gene encodes 753 amino acids with a deduced molecular weight of 83,409. Cel5D consists of a signal peptide of 24 amino acids, a family-5 catalytic module, a dockerin module, and two family-4 carbohydrate-binding modules (CBMs). The cel9A gene encodes 936 amino acids with a deduced molecular weight of 104,174, consisting of a signal peptide, a family-9 catalytic module, a family-3 CBM, and a dockerin module. The catalytic module polypeptide (rCel5DCat) derived from Cel5D was constructed, expressed, and purified from a recombinant E. coli. The truncated enzyme hydrolyzed cellohexaose, cellopentaose, and cellotetraose to yield mainly cellotriose and cellobiose with glucose as a minor product, but the enzyme was less active toward cellotriose and not active toward cellobiose, suggesting that this enzyme is a typical endoglucanase. rCel5DCat had a Km of 3.9 mg/ml and a Vmax of 37.2 micromol/min/mg for carboxymethycellulose.  (+info)

Use of community genome arrays (CGAs) to assess the effects of Acacia angustissima on rumen ecology. (7/64)

This research developed a community genome array (CGA) to assess the effects of Acacia angustissima on rumen microbiology. A. angustissima produces non-protein amino acids as well as tannins, which may be toxic to animals, and CGA was used to assess the effects of this plant on the ecology of the rumen. CGAs were developed using a 7.5 cmx2.5 cm nylon membrane format that included up to 96 bacterial genomes. It was possible to separately hybridize large numbers of membranes at once using this mini-membrane format. Pair-wise cross-hybridization experiments were conducted to determine the degree of cross-hybridization between strains; cross-hybridization occurred between strains of the same species, but little cross-reactivity was observed among different species. CGAs were successfully used to survey the microbial communities of animals consuming an A. angustissima containing diet but quantification was not precise. To properly quantify and validate the CGA, Fibrobacter and Ruminococcus populations were independently assessed using 16S rDNA probes to extracted rRNA. The CGA detected an increase in these populations as acacia increased in the diet, which was confirmed by rRNA analysis. There was a great deal of variation among strains of the same species in how they responded to A. angustissima. However, in general Selenomonas strains tended to be resistant to the tannins in the acacia while Butyrivibrio fibrisolvens was sensitive. On the other hand some species, like streptococci, varied. Streptococcus bovis-like strains were sensitive to an increase in acacia in the diet while Streptococcus gallolyticus-like strains were resistant. Strep. gallolyticus has independently been shown to be resistant to tannins. It is concluded that there is significant variation in tannin resistance between strains of the same species. This implies that there are specific molecular mechanisms at play that are independent of the phylogenetic position of the organism.  (+info)

The Ruminococcus albus pilA1-pilA2 locus: expression and putative role of two adjacent pil genes in pilus formation and bacterial adhesion to cellulose. (8/64)

Ruminococcus albus produces fimbria-like structures that are involved with the bacterium's adhesion to cellulose. The subunit protein has been identified in strain 8 (CbpC) and strain 20 (GP25) and both are type IV fimbrial (Pil) proteins. The presence of a pil locus that is organized similarly in both strains is reported here together with the results of an initial examination of a second Pil protein. Downstream of the cbpC/gp25 gene (hereafter referred to as pilA1) is a second pilin gene (pilA2). Northern blot analysis of pilA1 and pilA2 transcripts showed that the pilA1 transcript is much more abundant in R. albus 8, and real-time PCR was used to measure pilA1 and pilA2 transcript abundance in R. albus 20 and its adhesion-defective mutant D5. Similar to the findings with R. albus 8, the relative expression of pilA1 in the wild-type strain was 73-fold higher than that of pilA2 following growth with cellobiose, and there were only slight differences between the wild-type and mutant strain in pilA1 and pilA2 transcript abundances, indicating that neither pilA1 nor pilA2 transcription is adversely affected in the mutant strain. Western immunoblots showed that the PilA2 protein is localized primarily to the membrane fraction, and the anti-PilA2 antiserum does not inhibit bacterial adhesion to cellulose. These results suggest that the PilA2 protein plays a role in the synthesis and assembly of type IV fimbriae-like structures by R. albus, but its role is restricted to cell-associated functions, rather than as part of the externalized fimbrial structure.  (+info)