Aldose reductase inhibitor improves insulin-mediated glucose uptake and prevents migration of human coronary artery smooth muscle cells induced by high glucose. (1/67)

We examined involvement of the polyol pathway in high glucose-induced human coronary artery smooth muscle cell (SMC) migration using Boyden's chamber method. Chronic glucose treatment for 72 hours potentiated, in a concentration-dependent manner (5.6 to 22.2 mol/L), platelet-derived growth factor (PDGF) BB-mediated SMC migration. This potentiation was accompanied by an increase in PDGF BB binding, because of an increased number of PDGF-beta receptors, and this potentiation was blocked by the aldose reductase inhibitor epalrestat. Epalrestat at concentrations of 10 and 100 nmol/L inhibited high glucose-potentiated (22.2 mmol/L), PDGF BB-mediated migration. Epalrestat at 100 nmol/L inhibited a high glucose-induced increase in the reduced/oxidized nicotinamide adenine dinucleotide ratio and membrane-bound protein kinase C (PKC) activity in SMCs. PKC inhibitors calphostin C (100 nmol/L) and chelerythrine (1 micromol/L) each inhibited high glucose-induced, PDGF BB-mediated SMC migration. High glucose-induced suppression of insulin-mediated [(3)H]-deoxyglucose uptake, which was blocked by both calphostin C (100 nmol/L) and chelerythrine (1 micromol/L), was decreased by epalrestat (100 nmol/L). Chronic high glucose treatment for 72 hours increased intracellular oxidative stress, which was directly measured by flow cytometry using carboxydichlorofluorescein diacetate bis-acetoxymethyl ester, and this increase was significantly suppressed by epalrestat (100 nmol/L). Antisense oligonucleotide to PKC-beta isoform inhibited high glucose-mediated changes in SMC migration, insulin-mediated [(3)H]-deoxyglucose uptake, and oxidative stress. These findings suggest that high glucose concentrations potentiate SMC migration in coronary artery and that the aldose reductase inhibitor epalrestat inhibits high glucose-potentiated, PDGF BB-induced SMC migration, possibly through suppression of PKC (PKC-beta), impaired insulin-mediated glucose uptake, and oxidative stress.  (+info)

Action potentials of isolated single muscle fibers recorded by potential-sensitive dyes. (2/67)

Light transmission changes upon massive stimulation of single muscle fibers of Xenopus were studied with the potential-sensitive nonpermeant dyes, merocyanine rhodanine (WW375) and merocyanine oxazolone (NK2367). Upon stimulation an absorption change (wave a) occurred, which probably represents the sum of action potentials in the transverse tubules and surface membrane. In WW375-stained fibers wave a is a decrease in transmission over the range of 630 to 730 nm (with NK2367, over the range of 590 to 700 nm) but becomes an increase outside this range, thus showing a triphasic spectral pattern. This spectrum differs from that of the squid axon, in which depolarization produces only an increase in transmission over the whole range of wavelengths (Ross et al. 1977. J. Membr. Biol. 33:141-183). When wave a was measured at the edge of the fiber to obtain more signal from the surface membrane, the spectrum did not seem to differ markedly from that obtained from the entire width of the fiber. Thus, the difference in the spectrum between the squid axon and the vertebrate muscle cannot be attributed to the presence of the tubular system.  (+info)

Radial propagation of muscle action potential along the tubular system examined by potential-sensitive dyes. (3/67)

Isolated single (Xenopus) muscle fibers were stained with a non-permeant potential-probing dye, merocyanine rhodanine (WW375) or merocyanine oxazolone (NK2367). When the fiber was massively stimulated, an absorption change (wave a), which seemed to reflect the action potential, occurred. Simultaneous recording of optical changes and intracellular action potentials revealed that the time-course of wave a was slower than the action potential: the peak of wave a was attained at 1 ms, and the peak of action potential was reached at 0.5 ms after the stimulation. This difference suggests that wave a represents the potential changes of the whole tubular membrane and the surface membrane, whereas the action potential represents a surface potential change. This idea was substantiated by recording absorption signals preferentially from the surface membrane by recording the absorption changes at the edge of the fiber. Wave a obtained by this method was as quick as the intracellular action potential. The value of radial conduction velocity of action potential along the T system, calculated by comparing the action potential with wave a, was 6.4 cm/s at 24.5 degrees C, in fair agreement with Gonzalez-Serratos (1971. J. Physiol. [Lond.]. 212:777-799). The shape of wave a suggests the existence of an access delay (a conduction delay at the orifice of the T system) of 130 microseconds.  (+info)

Epalrestat, an aldose reductase ihibitor, reduces the levels of Nepsilon-(carboxymethyl)lysine protein adducts and their precursors in erythrocytes from diabetic patients. (4/67)

OBJECTIVE: To clarify the role of the polyol pathway in the intracellular formation of advanced glycation end products in human tissues, we examined the effects of epalrestat, an aldose reductase inhibitor, on the level of Nepsilon-(carboxymethyl)lysine (CML) along with 3-deoxyglucosone (3-DG) and triosephosphates in erythrocytes from diabetic patients. Plasma thiobarbituric acid-reactive substances (TBARS) were also determined as indicators of oxidative stress. RESEARCH DESIGN AND METHODS: Blood samples were collected from 12 nondiabetic volunteers, 38 untreated type 2 diabetic patients, and 16 type 2 diabetic patients who had been treated with 150 mg epalrestat/day. Blood samples were also collected from 14 of the untreated type 2 diabetic patients before and after the administration of epalrestat for 2 months. The amount of erythrocyte CML was determined by a competitive enzyme-linked immunosorbent assay, and 3-DG was measured by high-performance liquid chromatography RESULTS: In diabetic patients not treated with epalrestat, the erythrocyte CML level was significantly elevated above levels seen in nondiabetic individuals (49.9 +/- 5.0 vs. 31.0 +/- 5.2 U/g protein, P < 0.05) and was significantly lower in patients receiving epalrestat (33.1 +/- 3.8 U/g protein, P < 0.05). Similar results were observed with 3-DG. The treatment of patients with epalrestat for 2 months significantly lowered the level of erythrocyte CML (46.2 +/- 5.6 at baseline vs. 34.4 +/- 5.0 U/g protein, P < 0.01) along with erythrocyte 3-DG (P < 0.05), triosephosphates (P < 0.05), fructose (P < 0.05), sorbitol (P < 0.05), and plasma TBARS (P < 0.05) without changes in plasma glucose and HbA(1c) levels. A positive correlation was evident between the erythrocyte CML and sorbitol (r = 0.49, P < 0.01) or fructose (r = 0.40, P < 0.05) levels in diabetic patients. CONCLUSIONS: The results indicate that epalrestat administration lowers CML and associated variables and that polyol metabolites are correlated with CML in the erythrocytes of diabetic patients. The observed results suggest that aldose reductase activity may play a substantial role in the intracellular formation of CML in the mediation of reactive intermediate metabolites and oxidative stress.  (+info)

Improvement of corneal fluorescein staining in post cataract surgery of diabetic patients by an oral aldose reductase inhibitor, ONO-2235. (5/67)

AIM: While the mechanism in the pathogenesis of diabetic corneal disease is unclear, aldose reductase has been implicated in corneal disease. The effects of an oral aldose reductase inhibitor (ARI) on the ocular surface of diabetic patients after cataract surgery were studied. METHODS: This clinical trial was designed to be randomised, double blinded, and placebo controlled. Pseudophakic patients with diabetes were randomly assigned to treatment with either oral ARI (ONO-2235) (n=12) or placebo (n=9) for 12 weeks. The vital staining of the ocular surface, tear production and clearance, break up time in tears (BUT), corneal and conjunctival sensation, and symptom score before treatments were examined as well as 4, 8, 12 weeks after the administration. Specular microscopic evaluation was also performed. RESULTS: After a 12 week period of oral ARI administration, fluorescein staining scores (from 2.04 (SD 1.12) to 1.46 (1.18); p=0.016), conjunctival sensation (from 1.15 (0.37) to 1.36 (0.31); p=0.0006), and symptom scores (from 5.38 (1.932) to 4.00 (2.07); p=0.0002) recovered significantly. Fluorescein staining of oral ARI administration also decreased compared with placebo (p=0.017). Rose bengal staining, tear clearance, and corneal sensation were improved although this increase was minor. Tear production, BUT, and specular microscopic evaluation of the corneal epithelium and endothelium did not demonstrate a significant change. CONCLUSION: Oral ARI opposes the ocular surface changes caused by diabetes, by recovery of ocular surface sensitivity as demonstrated through an improvement in vital staining.  (+info)

Effects of epalrestat, an aldose reductase inhibitor, on diabetic neuropathy and gastroparesis. (6/67)

OBJECTIVE: Diabetic patients with severe autonomic nervous disorder show delayed gastric emptying accompanied by diabetic gastroparesis, which decreases the electric activity of the stomach associated with gastric motility. It is reported that epalrestat, an aldose reductase inhibitor, is useful for treating diabetic neuropathy. Therefore, we evaluated whether this drug improves the decreased gastric motility in diabetic patients. METHODS: The present study evaluated the electrogastrograms (EGG) and autonomic nervous activity in 15 healthy volunteers (N group), and in 15 diabetic patients before and after the administration of epalrestat (DM group). Autonomic nervous activity was evaluated by spectral analysis of heart rate variability. The EGGs were recorded before and after oral administration of epalrestat (3 months or more) in the DM group. RESULTS: The dominant frequency of EGG was 3 cycles/min (cpm) in the N group. However, these 3 cpm waves disappeared with bradygastria, and postprandial increases in the peak powers of EGG were not observed in the DM group. Both the amplitude of 3 cpm waves and the postprandial peak powers were significantly increased after the administration of epalrestat. The parameters of autonomic nervous activities (LF power, HF power, and the LF/HF ratio) were significantly lower in the DM group before the administration of epalrestat than in the N group. However, these parameters were improved after the administration of epalrestat. CONCLUSION: Since gastroparesis is a form of diabetic dysautonomia, complication by gastroparesis may influence blood sugar control and the absorbance of oral antidiabetics. Epalrestat significantly increased the amplitude of 3 cpm waves on EGG and improved the spectral analytical parameters of heart rate variability. These findings suggest that epalrestat is useful for the treatment of diabetic gastroparesis.  (+info)

Antiedematogenic activity of two thiazolidine derivatives: N-tryptophyl-5-(3,5-di-tert-butyl-4-hydroxybenzylidene) rhodanine (GS26) and N-tryptophyl-5-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2,4-thiazolidinedione (GS28). (7/67)

The search for new anti-inflammatory drugs has been constant in several research centers. The use of the Bioisostery concept allows the elaboration of new bioactive compounds with different properties through the introduction of substitute groups in one or more positions of a main molecule with known biological activity. Preliminary works accomplished at our laboratory with 2,4-thiazolidinedione isosters demonstrated inhibitory activity on edema formation for N-tryptophyl-5-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2,4-thiazolidinedione (GS28) and N-tryptophyl-5-(3,5-di-tert-butyl-4-hydroxybenzylidene) rhodanine (GS26). We verified the antiedematogenic and ulcerogenic activity of these two compounds in Wistar rats. The carrageenan induced paw edema suffered significant (p<0.05) inhibition (28.36% on average) for GS28 (100 mg/kg; v.o.) during the entire time of the experiment. GS26 (50 and 100 mg/kg; v.o.) significantly inhibited (p<0.05) the paw edema dextran induced (22.1 and 27.8%, for the respective doses) after 180 min. The compounds GS26 and GS28 did not show ulcerogenic activity on gastric mucous. The results suggest antiedematogenic action for both compounds without the appearance of gastric lesions.  (+info)

Optical mapping of the functional organization of the rat trigeminal nucleus: initial expression and spatiotemporal dynamics of sensory information transfer during embryogenesis. (8/67)

We examined the functional organization of the rat trigeminal nuclear complex and its developmental dynamics using a multiple-site optical recording technique. Brainstem preparations were dissected from embryonic day 12 (E12)-E16 rat embryos, and stimulation was applied individually to the three branches of the trigeminal nerve (V1-V3). The action potential activity of presynaptic fibers was detected from E13, and the glutamate-mediated postsynaptic response was significantly observed from E15 on. At E14, the evoked signals usually consisted of only the action potential-related fast component. However, when extracellular Mg2+ was removed, a significant dl-2-amino-5-phosphonovaleric acid-sensitive slow component appeared. These results suggest that postsynaptic function mediated by NMDA receptors is latently generated as early as E14. The response area of the three branches of the trigeminal nerve showed some functional somatotopic organization, with the ophthalmic (V1) nerve area medially located and the mandibular (V3) nerve area laterally located. The center of the trigeminal nuclear complex in which the activity of neurons and synaptic function was greatest shifted caudally with development, suggesting that the functional architecture of the trigeminal nuclear complex is not fixed but changes dynamically during embryogenesis. By electron microscopy, we could not observe clear correlations between functional data and morphological information; when we surveyed E16 preparations, we could not identify typical synaptic structures between the 1,1'-dioctyldecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-labeled trigeminal nerve terminals and the neurons in the trigeminal nuclear complex. This implies that postsynaptic function in the trigeminal nuclear complex is generated before the appearance of the morphological structure of conventional synapses.  (+info)