The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. (1/59)

The RD114/simian type D retroviruses, which include the feline endogenous retrovirus RD114, all strains of simian immunosuppressive type D retroviruses, the avian reticuloendotheliosis group including spleen necrosis virus, and baboon endogenous virus, use a common cell-surface receptor for cell entry. We have used a retroviral cDNA library approach, involving transfer and expression of cDNAs from highly infectable HeLa cells to nonpermissive NIH 3T3 mouse cells, to clone and identify this receptor. The cloned cDNA, denoted RDR, is an allele of the previously cloned neutral amino acid transporter ATB0 (SLC1A5). Both RDR and ATB0 serve as retrovirus receptors and both show specific transport of neutral amino acids. We have localized the receptor by radiation hybrid mapping to a region of about 500-kb pairs on the long arm of human chromosome 19 at q13.3. Infection of cells with RD114/type D retroviruses results in impaired amino acid transport, suggesting a mechanism for virus toxicity and immunosuppression. The identification and functional characterization of this retrovirus receptor provide insight into the retrovirus life cycle and pathogenesis and will be an important tool for optimization of gene therapy using vectors derived from RD114/type D retroviruses.  (+info)

Activation in vivo of retroperitoneal fibromatosis-associated herpesvirus, a simian homologue of human herpesvirus-8. (2/59)

Retroperitoneal fibromatosis-associated herpesvirus of rhesus macaques (RFHVMm) is a gammaherpesvirus closely related to human herpesvirus-8 (HHV-8), which is thought to be a necessary cofactor for the development of Kaposi's sarcoma (KS) in humans. Here, RFHVMm infection of rhesus macaques exposed to the D-type retrovirus simian retrovirus-2 (SRV-2) is described. Development of SRV-2 viraemia, infection with simian immunodeficiency virus or administration of cyclosporin A could result in persistent RFHVMm viraemia. From this, it is concluded that productive retrovirus infection or otherwise-induced immune suppression has the ability to activate this herpesvirus in vivo. Elevated levels of circulating interleukin-6, a cytokine that plays a central role in KS, were found in RFHVMm-viraemic animals. In viraemic animals, RFHVMm was found in tissues that are common sites for the development of AIDS-associated KS, especially the oral cavity. Together, these data suggest a common biology between RFHVMm infection of macaques and HHV-8 infection and pathogenesis in humans.  (+info)

A sodium-dependent neutral-amino-acid transporter mediates infections of feline and baboon endogenous retroviruses and simian type D retroviruses. (3/59)

The type D simian retroviruses cause immunosuppression in macaques and have been reported as a presumptive opportunistic infection in a patient with AIDS. Previous evidence based on viral interference has strongly suggested that the type D simian viruses share a common but unknown cell surface receptor with three type C viruses: feline endogenous virus (RD114), baboon endogenous virus, and avian reticuloendotheliosis virus. Furthermore, the receptor gene for these viruses has been mapped to human chromosome 19q13.1-13.2. We now report the isolation and characterization of a cell surface receptor for this group of retroviruses by using a human T-lymphocyte cDNA library in a retroviral vector. Swiss mouse fibroblasts (NIH 3T3), which are naturally resistant to RD114, were transduced with the retroviral library and then challenged with an RD114-pseudotyped virus containing a dominant selectable gene for puromycin resistance. Puromycin selection yielded 12 cellular clones that were highly susceptible to a beta-galactosidase-encoding lacZ(RD114) pseudotype virus. Using PCR primers specific for vector sequences, we amplified a common 2.9-kb product from 10 positive clones. Expression of the 2.9-kb cDNA in Chinese hamster ovary cells conferred susceptibility to RD114, baboon endogenous virus, and the type D simian retroviruses. The 2.9-kb cDNA predicted a protein of 541 amino acids that had 98% identity with the previously cloned human Na+-dependent neutral-amino-acid transporter Bo. Accordingly, expression of the RD114 receptor in NIH 3T3 cells resulted in enhanced cellular uptake of L-[3H]alanine and L-[3H]glutamine. RNA blot (Northern) analysis suggested that the RD114 receptor is widely expressed in human tissues and cell lines, including hematopoietic cells. The human Bo transporter gene has been previously mapped to 19q13.3, which is closely linked to the gene locus of the RD114 receptor.  (+info)

Molecular cloning and cell-specific growth characterization of polymorphic variants of type D serogroup 2 simian retroviruses. (4/59)

Simian retroviruses (SRVs), the etiological agent of a spontaneous Simian acquired immunodeficiency syndrome, endemically infects large percentages of Asian macaques housed in biomedical research colonies and severely compromises the effective use of these species as a viable research animal. We recently described the molecular cloning of a serogroup 2 SRV, D2/RHE/OR, which causes mild immunosuppression in rhesus macaques. A restriction site variant, D2/RHE/OR/V1, has also been recovered from severely ill animals endemically infected with D2/RHE/OR. We now report the complete nucleotide sequences of D2/RHE/OR and D2/RHE/OR/V1. Both infectious molecular clones retain the genetic structure typical of type D SRVs (5' LTR-gag-prt-pol-env-3'LTR) and encode identically sized 8105-bp proviruses. D2/RHE/OR and D2/RHE/OR/V1 are 99.3% similar at the amino acid level, exhibiting only 17 residue differences, of which 10 are located in the envelope glycoproteins. The molecular clones and reciprocal chimeric viruses were used to assess the contribution of different genetic domains to virus infectivity in a T cell infection assay. These experiments indicate that D2/RHE/OR has a reduced ability to infect specific T cell lines, especially Hut-78 and MT-4 cells, and that the envelope gene is not the sole determinant of in vitro tropism.  (+info)

Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans. (5/59)

BACKGROUND: Endogenous retroviruses contribute to the evolution of the host genome and can be associated with disease. Human endogenous retrovirus K (HERV-K) is related to the mouse mammary tumor virus and is present in the genomes of humans, apes and cercopithecoids (Old World monkeys). It is unknown how long ago in primate evolution the full-length HERV-K proviruses that are in the human genome today were formed. RESULTS: Ten full-length HERV-K proviruses were cloned from the human genome. Using provirus-specific probes, eight of the ten were found to be present in a genetically diverse set of humans but not in other extant hominoids. Intact preintegration sites for each of these eight proviruses were present in the apes. A ninth provirus was detected in the human, chimpanzee, bonobo and gorilla genomes, but not in the orang-utan genome. The tenth was found only in humans, chimpanzees and bonobos. Complete sequencing of six of the human-specific proviruses showed that full-length open reading frames for the retroviral protein precursors Gag-Pro-Pol or Env were each present in multiple proviruses. CONCLUSIONS: At least eight full-length HERV-K genomes that are in the human germline today integrated after humans diverged from chimpanzees. All of the viral open reading frames and cis-acting sequences necessary for HERV-K replication must have been intact during the recent time when these proviruses formed. Multiple full-length open reading frames for all HERV-K proteins are present in the human genome today.  (+info)

Nucleocytoplasmic export of type D simian retrovirus genomic RNA: identification of important genetic subregions and interacting cellular proteins. (6/59)

The simian retrovirus (SRV) genome contains a constitutive transport element (CTE) within its 3' intergenic region (IR) that mediates the nuclear export of unspliced SRV RNA. The serogroup 2 SRV CTE is predicted to form a stable stem-loop structure containing two major internal loops exhibiting 180 degrees inverse symmetry, with loop face sequences A, A', B, and B' and additional minor internal and terminal loops. To begin the identification of potential CTE-interacting proteins and to assess structural requirements for protein interaction, we conducted RNA mobility shift assays using IR fragments that obliterated this region's known stable stem-loop structure. Using immunoblotting assays, we have determined that RNA helicase A, implicated in the nuclear export of unspliced SRV genomic RNA, does not appear to interact directly with either the complete serogroup 2 SRV 3' IR or the subregion RNAs and that formation of RNA-protein complexes is conferred by interaction with other novel proteins. UV crosslinking of RNA-protein complexes, coupled with RNase T1/A digestion, indicates that a novel protein of 120 kDa molecular weight interacts with the complete CTE or with individual subregion RNAs. Transfection analyses indicate that SRV recombinants containing A, A', B, or B' sequences forming the faces for two open loops undergo RNA export; only the complete sense CTE recombinant or a second recombinant containing two subregions in sense orientation that reconstitute the 3' two-thirds of the 3' IR, and contain only A' and B that form the faces for two terminal loops, are capable of SRV RNA export. These experiments indicate that secondary structural determinants of the 3' IR and multiple protein interactions may be important factors in the nuclear export of unspliced SRV RNA.  (+info)

Histologic lesions in cynomolgus monkeys (Macaca fascicularis) naturally infected with simian retrovirus type D: comparison of seropositive, virus-positive, and uninfected animals. (7/59)

Simian retrovirus (SRV) type D is a common cause of simian acquired immunodeficiency syndrome (SAIDS), a usually fatal immunosuppressive disease of macaques. Associated gross and histologic lesions have been well described for the rhesus macaque (Macaca mulatta) in experimental and natural infections. However, morphologic changes induced by this virus at the gross and light-microscopic level have not been documented in the cynomolgus macaque (Macaca fascicularis). In 1996, sporadic cases of anemia, weight loss, and diarrhea were noted in a colony of cynomolgus macaques in our research facility. Out of 28 animals, 24 tested positive for SRV by serology or virus isolation. Animals could mainly be classified into 1 of 2 categories: 1) positive for virus isolation but negative for SRV antibody and 2) negative for virus isolation but antibody positive. During the process of eliminating the virus from the colony, a complete postmortem examination was performed on the 24 infected animals that had to be culled. Twelve SRV-negative animals were available as controls. Minimal to mild follicular lymphoid infiltrates were seen in various organ systems in 75% of the negative animals, compared with moderate to marked infiltrates in 83% of infected animals. Lymphoid infiltrates were more common in the brain, bone marrow, and salivary gland of viremic animals and were rare to nonexistent in seropositive or negative animals. Lymphoid hyperplasia was present in 38% of the infected animals, whereas lymphoid depletion was seen in 47% of the infected animals. Overall, lesions were of greater severity in viremic animals than in virus-negative or seropositive animals. Overall, infected animals had lower, statistically significant hematocrit and lymphocyte values. Viremic animals had significantly lower hematocrit, white blood cell, lymphocyte, and neutrophil values than did controls. Only 1 out of 24 infected animals had clinical signs that were consistent with the definition of SAIDS, and none had evidence of opportunistic infections. Lesions were similar to those already reported in other species of macaques, but the absence of severe illness that was consistent with SAIDS in most viremic animals suggests that there may be a different manifestation of disease in the cynomolgus.  (+info)

Virus load and sequence variation in simian retrovirus type 2 infection. (8/59)

The natural history of type D simian retrovirus (SRV) infection is poorly characterized in terms of viral load, antibody status, and sequence variation. To investigate this, blood samples were taken from a small cohort of mostly asymptomatic cynomolgus macaques (Macaca fascicularis), naturally infected with SRV type 2 (SRV-2), some of which were followed over an 8-month period with blood taken every 2 months. Provirus and RNA virus loads were obtained, the samples were screened for presence of antibodies to SRV-2 and neutralizing antibody titers to SRV-2 were assayed. env sequences were aligned to determine intra- and intermonkey variation over time. Virus loads varied greatly among cohort individuals but, conversely, remained steady for each macaque over the 8-month period, regardless of their initial levels. No significant sequence variation was found within an individual over time. No clear picture emerged from these results, which indicate that the variables of SRV-2 infection are complex, differ from those for lentivirus infection, and are not distinctly related to disease outcome.  (+info)