The murine homolog (Mph) of human herpesvirus entry protein B (HveB) mediates entry of pseudorabies virus but not herpes simplex virus types 1 and 2. (1/165)

A mouse member of the immunoglobulin superfamily, originally designated the murine poliovirus receptor homolog (Mph), was found to be a receptor for the porcine alphaherpesvirus pseudorabies virus (PRV). This mouse protein, designated here murine herpesvirus entry protein B (mHveB), is most similar to one of three related human alphaherpesvirus receptors, the one designated HveB and also known as poliovirus receptor-related protein 2. Hamster cells resistant to PRV entry became susceptible upon expression of a cDNA encoding mHveB. Anti-mHveB antibody and a soluble protein composed of the mHveB ectodomain inhibited mHveB-dependent PRV entry. Expression of mHveB mRNA was detected in a variety of mouse cell lines, but anti-mHveB antibody inhibited PRV infection in only a subset of these cell lines, indicating that mHveB is the principal mediator of PRV entry into some mouse cell types but not others. Coexpression of mHveB with PRV gD, but not herpes simplex virus type 1 (HSV-1) gD, inhibited entry activity, suggesting that PRV gD may interact directly with mHveB as a ligand that can cause interference. By analogy with HSV-1, envelope-associated PRV gD probably also interacts directly with mHveB during viral entry.  (+info)

Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. (2/165)

We have isolated a novel actin filament-binding protein, named afadin, localized at cadherin-based cell-cell adherens junctions (AJs) in various tissues and cell lines. Afadin has one PDZ domain, three proline-rich regions, and one actin filament-binding domain. We found here that afadin directly interacted with a family of the immunoglobulin superfamily, which was isolated originally as the poliovirus receptor-related protein (PRR) family consisting of PRR1 and -2, and has been identified recently to be the alphaherpes virus receptor. PRR has a COOH-terminal consensus motif to which the PDZ domain of afadin binds. PRR and afadin were colocalized at cadherin-based cell-cell AJs in various tissues and cell lines. In E-cadherin-expressing EL cells, PRR was recruited to cadherin-based cell-cell AJs through interaction with afadin. PRR showed Ca2+-independent cell-cell adhesion activity. These results indicate that PRR is a cell-cell adhesion molecule of the immunoglobulin superfamily which is recruited to cadherin-based cell-cell AJs through interaction with afadin. We rename PRR as nectin (taken from the Latin word "necto" meaning "to connect").  (+info)

A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. (3/165)

TR6 (decoy receptor 3 (DcR3)) is a new member of the tumor necrosis factor receptor (TNFR) family. TR6 mRNA is expressed in lung tissues and colon adenocarcinoma, SW480. In addition, the expression of TR6 mRNA was shown in the endothelial cell line and induced by phorbol 12-myristate 13-acetate/ionomycin in Jurkat T leukemia cells. The open reading frame of TR6 encodes 300 amino acids with a 29-residue signal sequence but no transmembrane region. Using histidine-tagged recombinant TR6, we screened soluble forms of TNF-ligand proteins with immunoprecipitation. Here, we demonstrate that TR6 specifically binds two cellular ligands, LIGHT (herpes virus entry mediator (HVEM)-L) and Fas ligand (FasL/CD95L). These bindings were confirmed with HEK 293 EBNA cells transfected with LIGHT cDNA by flow cytometry. TR6 inhibited LIGHT-induced cytotoxicity in HT29 cells. It has been shown that LIGHT triggers apoptosis of various tumor cells including HT29 cells that express both lymphotoxin beta receptor (LTbetaR) and HVEM/TR2 receptors. Our data suggest that TR6 inhibits the interactions of LIGHT with HVEM/TR2 and LTbetaR, thereby suppressing LIGHT- mediated HT29 cell death. Thus, TR6 may play a regulatory role for suppressing in FasL- and LIGHT-mediated cell death.  (+info)

Cutting edge: a novel viral TNF receptor superfamily member in virulent strains of human cytomegalovirus. (4/165)

The UL144 open reading frame found in clinical isolates of human CMV (HCMV) encodes a structural homologue of the herpesvirus entry mediator, a member of the TNFR superfamily. UL144 is a type I transmembrane glycoprotein that is expressed early after infection of fibroblasts; however, it is retained intracellularly. A YXXZ motif in the highly conserved cytoplasmic tail contributes to UL144 subcellular distribution. The finding that no known ligand of the TNF family binds UL144 suggests that its mechanism of action is distinct from other known viral immune evasion genes. Specific Abs to UL144 can be detected in the serum of a subset of HCMV seropositive individuals infected with HIV. This work establishes a novel molecular link between the TNF superfamily and herpesvirus that may contribute to the ability of HCMV to escape immune clearance.  (+info)

Inhibition of herpes simplex virus gD and lymphotoxin-alpha binding to HveA by peptide antagonists. (5/165)

The herpesvirus entry mediator A (HveA) is a recently characterized member of the tumor necrosis factor receptor family that mediates the entry of most herpes simplex virus type 1 (HSV-1) strains into mammalian cells. Studies on the interaction of HSV-1 with HveA have shown that of all the viral proteins involved in uptake, only gD has been shown to bind directly to HveA, and this binding mediates viral entry into cells. In addition to gD binding to HveA, the latter has been shown to interact with proteins of tumor necrosis factor receptor-associated factor family, lymphotoxin-alpha (LT-alpha), and a membrane-associated protein referred to as LIGHT. To study the relationship between HveA, its natural ligands, and the viral proteins involved in HSV entry into cells, we have screened two phage-displayed combinatorial peptide libraries for peptide ligands of a recombinant form of HveA. Affinity selection experiments yielded two peptide ligands, BP-1 and BP-2, which could block the interaction between gD and HveA. Of the two peptides, only BP-2 inhibited HSV entry into CHO cells transfected with an HveA-expressing plasmid. When we analyzed these peptides for the ability to interfere with HveA binding to its natural ligand LT-alpha, we found that BP-1 inhibited the interaction of cellular LT-alpha with HveA. Thus, we have dissected the sites of interaction between the cell receptor, its natural ligand LT-alpha and gD, the virus-specific protein involved in HSV entry into cells.  (+info)

Functional characterization of the HveA homolog specified by African green monkey kidney cells with a herpes simplex virus expressing the green fluorescence protein. (6/165)

We cloned the gene specified by African monkey kidney cells (Vero) that codes for the homolog of the herpes virus entry mediator (HveA) specified by HeLa cells. The primary sequence of the monkey HveA (HveAs) differed significantly from HveA. Single amino acid differences were distributed throughout the amino and carboxyl terminal portions of the HveAs in comparison with the HveA, whereas certain regions were highly conserved. The predicted membrane spanning domains of the two receptors differed substantially due to insertions and deletions of short amino acid sequences. The ability of HveAs to mediate HSV virus entry was tested in a series of experiments using the recombinant virus KOS/EGFP, which constitutively expressed the enhanced green fluorescence protein (EGFP) and Chinese hamster ovary cells (CHO) transformed with the HveAs gene. The KOS/EGFP virus was constructed by inserting an EGFP gene cassette within the intergenic region between the UL53 (gK) and UL54 (ICP27) genes. The KOS/EGFP virus formed viral plaques and replicated as well as the wild-type KOS virus. HveAs-transformed CHO cells constitutively expressing HveAs mediated herpesvirus entry efficiently, whereas cells transformed with the HveAs gene in the noncoding orientation did not mediate virus entry. A genetically engineered protein composed of the amino-terminal portion of the HveAs protein fused to the heavy chain of mouse IgG immunoglobulin as well as mouse antibodies raised against HveAs blocked virus entry into HveAs-transformed CHO cells. Thus, HveAs is the functional homolog of HveA.  (+info)

The first immunoglobulin-like domain of HveC is sufficient to bind herpes simplex virus gD with full affinity, while the third domain is involved in oligomerization of HveC. (7/165)

The human herpesvirus entry mediator C (HveC/PRR1) is a member of the immunoglobulin family used as a cellular receptor by the alphaherpesviruses herpes simplex virus (HSV), pseudorabies virus, and bovine herpesvirus type 1. We previously demonstrated direct binding of the purified HveC ectodomain to purified HSV type 1 (HSV-1) and HSV-2 glycoprotein D (gD). Here, using a baculovirus expression system, we constructed and purified truncated forms of the receptor containing one [HveC(143t)], two [HveC(245t)], or all three immunoglobulin-like domains [HveC(346t)] of the extracellular region. All three constructs were equally able to compete with HveC(346t) for gD binding. The variable domain bound to virions and blocked HSV infection as well as HveC(346t). Thus, all of the binding to the receptor occurs within the first immunoglobulin-like domain, or V-domain, of HveC. These data confirm and extend those of Cocchi et al. (F. Cocchi, M. Lopez, L. Menotti, M. Aoubala, P. Dubreuil, and G. Campadelli-Fiume, Proc. Natl. Acad. Sci. USA 95:15700, 1998). Using biosensor analysis, we measured the affinity of binding of gD from HSV strains KOS and rid1 to two forms of HveC. Soluble gDs from the KOS strain of HSV-1 had the same affinity for HveC(346t) and HveC(143t). The mutant gD(rid1t) had an increased affinity for HveC(346t) and HveC(143t) due to a faster rate of complex formation. Interestingly, we found that HveC(346t) was a tetramer in solution, whereas HveC(143t) and HveC(245t) formed dimers, suggesting a role for the third immunoglobulin-like domain of HveC in oligomerization. In addition, the stoichiometry between gD and HveC appeared to be influenced by the level of HveC oligomerization.  (+info)

The major neutralizing antigenic site on herpes simplex virus glycoprotein D overlaps a receptor-binding domain. (8/165)

Herpes simplex virus (HSV) entry is dependent on the interaction of virion glycoprotein D (gD) with one of several cellular receptors. We previously showed that gD binds specifically to two structurally dissimilar receptors, HveA and HveC. We have continued our studies by using (i) a panel of baculovirus-produced gD molecules with various C-terminal truncations and (ii) a series of gD mutants with nonoverlapping 3-amino-acid deletions between residues 222 and 254. Binding of the potent neutralizing monoclonal antibody (MAb) DL11 (group Ib) was unaffected in forms of gD containing residues 1 to 250 but was greatly diminished in molecules truncated at residue 240 or 234. Both receptor binding and blocking of HSV infection were also affected by these C-terminal truncations. gD-1(234t) bound weakly to both HveA and HveC as determined by enzyme-linked immunosorbent assay (ELISA) and failed to block infection. Interestingly, gD-1(240t) bound well to both receptors but blocked infection poorly, indicating that receptor binding as measured by ELISA is not the only gD function required for blocking. Optical biosensor studies showed that while gD-1(240t) bound HveC with an affinity similar to that of gD-1(306t), the rates of complex formation and dissociation were significantly faster than for gD-1(306t). Complementation analysis showed that any 3-amino-acid deletion between residues 222 and 251 of gD resulted in a nonfunctional protein. Among this set of proteins, three had lost DL11 reactivity (those with deletions between residues 222 and 230). One of these proteins (deletion 222-224) was expressed as a soluble form in the baculovirus system. This protein did not react with DL11, bound to both HveA and HveC poorly as shown by ELISA, and failed to block HSV infection. Since this protein was bound by several other MAbs that recognize discontinuous epitopes, we conclude that residues 222 to 224 are critical for gD function. We propose that the potent virus-neutralizing activity of DL11 (and other group Ib MAbs) likely reflects an overlap between its epitope and a receptor-binding domain of gD.  (+info)