The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. (1/143)

Receptor recycling involves two endosome populations, peripheral early endosomes and perinuclear recycling endosomes. In polarized epithelial cells, either or both populations must be able to sort apical from basolateral proteins, returning each to its appropriate plasma membrane domain. However, neither the roles of early versus recycling endosomes in polarity nor their relationship to each other has been quantitatively evaluated. Using a combined morphological, biochemical, and kinetic approach, we found these two endosome populations to represent physically and functionally distinct compartments. Early and recycling endosomes were resolved on Optiprep gradients and shown to be differentially associated with rab4, rab11, and transferrin receptor; rab4 was enriched on early endosomes and at least partially depleted from recycling endosomes, with the opposite being true for rab11 and transferrin receptor. The two populations were also pharmacologically distinct, with AlF4 selectively blocking export of transferrin receptor from recycling endosomes to the basolateral plasma membrane. We applied these observations to a detailed kinetic analysis of transferrin and dimeric IgA recycling and transcytosis. The data from these experiments permitted the construction of a testable, mathematical model which enabled a dissection of the roles of early and recycling endosomes in polarized receptor transport. Contrary to expectations, the majority (>65%) of recycling to the basolateral surface is likely to occur from early endosomes, but with relatively little sorting of apical from basolateral proteins. Instead, more complete segregation of basolateral receptors from receptors intended for transcytosis occurred upon delivery to recycling endosomes.  (+info)

IL-4 and IFN-gamma increase steady state levels of polymeric Ig receptor mRNA in human airway and intestinal epithelial cells. (2/143)

Delivery of IgA to the mucosal surface occurs via transcytosis of polymeric IgA (pIgA) across the epithelium, a process mediated by the pIgR. Several factors increase pIgR expression in human epithelial cells, including IL-4 and IFN-gamma. Using an RNase protection assay, we found that IL-4 and IFN-gamma increase steady state levels of pIgR mRNA in both human intestinal (HT29) and airway (Calu-3) epithelial cells. Time course studies in HT29 clone 19A cells showed that with each cytokine alone and with both together: 1) there was a significant lag before mRNA levels increased; 2) maximal levels were not reached until 48-72 h after the addition of cytokines; 3) mRNA levels remained elevated in the continued presence of cytokines; and 4) addition of actinomycin D or removal of cytokines led to decreases in mRNA levels with a half-life of approximately 20-28 h. Cytokine-dependent increases in steady state levels of pIgR mRNA were inhibited by cycloheximide and by protein tyrosine kinase inhibitors but not by inhibitors of protein kinase C or cAMP-dependent protein kinase A. Both IFN-gamma and IL-4 increased expression of the inducible transcription factor IFN regulatory factor-1 (IRF-1), but levels of IRF-1 only weakly correlated with levels of pIgR mRNA, suggesting that additional transcription factors are required. These studies provide additional insights into the mechanisms by which cytokines regulate expression of the pIgR, a central player in mucosal immunity.  (+info)

Two stages of increased IgA transfer during lactation in the marsupial, trichosurus vulpecula (Brushtail possum). (3/143)

The polymeric Ig receptor (pIgR) and J chain molecules are involved in the transfer of IgA across the mammary gland epithelia into milk. The J chain binds two IgA molecules to form dimeric IgA, and the pIgR transports this complex through epithelial cells. We report here the cloning of the first marsupial homologues for the pIgR and J chain from the brushtail possum. Marsupial young are born after a short gestation and are less developed than eutherian newborn. The pouch young is completely dependent on milk as its sole source of nutrition during early lactation and this phase can be considered to be equivalent to an external gestation. Two periods of increased expression of pIgR, J chain, and IgA heavy chain mRNAs were observed in the mammary gland during lactation. The first occurs for a brief period after birth of the pouch young and is likely to reflect IgA transfer via the colostrum. The second period of increased expression, which is unique to marsupials, occurs after the early lactation period and just before young exit the pouch. We propose that this represents a second colostral-like phase at the end of the external gestation.  (+info)

Fine specificity of ligand-binding domain 1 in the polymeric Ig receptor: importance of the CDR2-containing region for IgM interaction. (4/143)

The human polymeric Ig receptor (pIgR), also called transmembrane secretory component, is expressed basolaterally on exocrine epithelia, and mediates specific external transport of dimeric IgA and pentameric IgM. The extracellular part of pIgR consists of five Ig-like domains (D1-D5), and a highly conserved D1 region appears to mediate the initial noncovalent ligand interaction. While the human pIgR binds both dimeric IgA and pentameric IgM with high affinity, the rabbit counterpart has virtually no binding capacity for pentameric IgM. This remarkable disparity constitutes evidence that the binding site of the two ligands differs with regard to essential receptor contact elements. Therefore, we expressed human/rabbit chimeric pIgRs in Madin-Darby canine kidney cells and found that human pIgR D1 is crucial for the interaction with pentameric IgM when placed in the context of a full-length receptor regardless of its backbone species. D1 contains three complementarity-determining region-like loops (CDR1-3), and to further map human D1 regions involved in pentameric IgM binding, we transfected Madin-Darby canine kidney cells with human/rabbit chimeric receptors in which the regions containing the CDR-like loops had been interchanged. Our results showed that the region containing the CDR2-like loop is the most essential for pentameric IgM binding. The region containing the CDR1-like loop also contributed substantially to this interaction, whereas only little contribution was provided by the region containing the CDR3-like loop, although it appeared to be necessary for maximal pentameric IgM binding.  (+info)

Transduction of basolateral-to-apical signals across epithelial cells: ligand-stimulated transcytosis of the polymeric immunoglobulin receptor requires two signals. (5/143)

Transcytosis of the polymeric immunoglobulin receptor (pIgR) is stimulated by binding of its ligand, dimeric IgA (dIgA). During this process, dIgA binding at the basolateral surface of the epithelial cell transmits a signal to the apical region of the cell, which in turn stimulates the transport of dIgA-pIgR complex from a postmicrotubule compartment to the apical surface. We have previously reported that the signal of stimulation was controlled by a protein-tyrosine kinase (PTK) activated upon dIgA binding. We now show that this signal of stimulation moves across the cell independently of pIgR movement or microtubules and acts through the tyrosine kinase activity by releasing Ca++ from inositol trisphosphate-sensitive intracellular stores. Surprisingly we have found that a second independent signal is required to achieve dIgA-stimulated transcytosis of pIgR. This second signal depends on dIgA binding to the pIgR solely at the basolateral surface and the ability of pIgR to dimerize. This enables pIgR molecules that have bound dIgA at the basolateral surface to respond to the signal of stimulation once they reach the postmicrotubule compartment. We propose that the use of two signals may be a general mechanism by which signaling receptors maintain specificity along their signaling and trafficking pathways.  (+info)

Interleukin-4 and interferon-gamma synergistically increase secretory component gene expression, but are additive in stimulating secretory immunoglobulin A release by Calu-3 airway epithelial cells. (6/143)

Interleukin-4 (IL-4) and interferon-gamma (IFN-gamma) synergize to express polymeric immunoglobulin receptor (pIgR) but their combined effect, and that of IL-4 alone, on secretory immunoglobulin A (sIgA) release is unknown. Recently, we have developed an airway epithelial cell model that allows assessment of the integrated effect of a stimulus on pIgR gene and protein expression and sIgA release. With this model we show here that IL-4 and IFN-gamma dose-dependently increased pIgR mRNA and protein expression, and sIgA release. IFN-gamma and IL-4 induced similar maximal expression of pIgR, but IFN-gamma enhanced sIgA release more than IL-4. When added together, IL-4 and IFN-gamma synergistically increased pIgR mRNA and protein expression, but sIgA release was stimulated in an additive manner. Thus, IL-4 and IFN-gamma may be implicated in the increase of sIgA levels as found in mucosal inflammatory diseases. In addition, our results indicate that transport and release of empty pIgR is subject to regulatory mechanisms different from those of pIgR with bound dimeric IgA.  (+info)

Expression of the polymeric immunoglobulin receptor and excretion of secretory IgA in the postischemic kidney. (7/143)

The humoral mucosal immune response of the kidney involves the transport of secretory IgA (S-IgA) through renal epithelial cells by the polymeric immunoglobulin receptor (pIgR). The pIgR is cleaved and released as free secretory component (FSC) or attached to IgA (S-IgA). We examined the effects of an ischemic model of acute renal failure (ARF) on the expression of pIgR and the secretion of FSC and S-IgA in the urine. Kidney pIgR mRNA levels decreased in ischemic animals by 55% at 4 h and by 85% at 72 h compared with controls. pIgR protein expression in the medullary thick ascending limb (TAL) decreased within 24 h and was nearly undetectable by 72 h. Urinary S-IgA and FSC concentrations decreased by 60% between days 3 and 6. pIgR mRNA and pIgR protein in the kidney returned to approximately 90% of control levels and urinary FSC and S-IgA concentrations returned to approximately 55% of control levels by day 7. We demonstrate that ischemic ARF decreases renal mucosal S-IgA transport in vivo and may contribute to the increased incidence of urinary tract infections.  (+info)

Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. (8/143)

Mucosal surfaces are protected specifically by secretory immunoglobulin A (SIgA) and SIgM generated through external translocation of locally produced dimeric IgA and pentameric IgM. Their active transport is mediated by the epithelial polymeric Ig receptor (pIgR), also called the transmembrane secretory component. Paracellular passive external transfer of systemic and locally produced antibodies also provides mucosal protection, making the biological importance of secretory immunity difficult to assess. Here we report complete lack of active external IgA and IgM translocation in pIgR knockout mice, indicating no redundancy in epithelial transport mechanisms. The knockout mice were of normal size and fertility but had increased serum IgG levels, including antibodies to Escherichia coli, suggesting undue triggering of systemic immunity. Deterioration of their epithelial barrier function in the absence of SIgA (and SIgM) was further attested to by elevated levels of albumin in their saliva and feces, reflecting leakage of serum proteins. Thus, SIgA did not appear to be essential for health under the antigen exposure conditions of these experimental animals. Nevertheless, our results showed that SIgA contributes to maintenance of mucosal homeostasis. Production of SIgA might therefore be a variable in the initiation of human immunopathology such as inflammatory bowel disease or gluten-sensitive enteropathy.  (+info)