Potent mast cell degranulation and vascular permeability triggered by urocortin through activation of corticotropin-releasing hormone receptors. (1/723)

Urocortin (Ucn) is related to corticotropin-releasing hormone (CRH), and both are released in the brain under stress where they stimulate CRH 1 and 2 receptors (CRHR). Outside the brain, they may have proinflammatory actions through activation of mast cells, which are located perivascularly close to nerve endings and degranulate in response to acute psychological stress. Here, we report that a concentration of intradermal Ucn as low as 10 nM induced dose-dependent rat skin mast cell degranulation and increased vascular permeability. This effect appeared to be equipotent to that of calcitonin gene-related peptide and neurotensin. Ucn-induced skin vasodilation was inhibited by pretreatment with the mast cell stabilizer disodium cromoglycate (cromolyn) and was absent in the mast cell-deficient W/Wv mice. The selective nonpeptide CRH receptor 1 antagonist, antalarmin and the nonselective peptide antagonist astressin both reduced vascular permeability triggered by Ucn but not that by Substance P or histamine. In contrast, the peptide antagonist alpha-helical CRH-(9-41) reduced the effect of all three. The vasodilatory effect of Ucn was largely inhibited by pretreatment with H1 receptor antagonists, suggesting that histamine is the major mediator involved in vitro. Neuropeptide depletion of sensory neurons, treatment with the ganglionic blocker hexamethonium, or in situ skin infiltration with the local anesthetic lidocaine did not affect Ucn-induced vascular permeability, indicating that its in situ effect was not mediated through the peripheral nervous system. These results indicate that Ucn is one of the most potent triggers of rat mast cell degranulation and skin vascular permeability. This effect of Ucn may explain stress-induced disorders, such as atopic dermatitis or psoriasis, and may lead to new forms of treatment.  (+info)

Corticotropin-releasing factor receptor 1 in mouse spleen: expression after immune stimulation and identification of receptor-bearing cells. (2/723)

A specific polyclonal Ab against the N-terminal domain of corticotropin-releasing factor (CRF) receptor, type 1 (CRF-R1), was employed to an immunohistochemical analysis of the spleen from naive mice and mice exposed to an immune challenge. Cell types stained with anti-CRF-R1 Ab were identified by their nuclear shapes and colocalization with the cell type-specific markers ER-MP58, ER-MP20, Moma-1, Moma 2, anti-CD3e mAbs, and anti-Ig Ab. Only a few clusters of CRF-R1+ cells were found in spleen sections of naive mice at sites typical for granulopoietic islands. However, a 17-fold increase in the mean number of CRF-R1+ cells was noted within hours following a challenge of acute systemic inflammation induced by i.p. administration of LPS. The majority of these cells were identified as mature neutrophils. CRF-R1 was shown to mediate suppression of the IL-1beta secretion by these cells. However, at later time points a large number of granulocyte-macrophage precursors was strongly labeled with anti-CRF-R1 Ab. Western blot analysis of splenic membranes from animals treated with LPS revealed a m.w. of approximately 70,000 for CRF-R1. Subcellular staining patterns were suggestive for the predominant localization of CRF-R1 on granule membranes. CRF-R1 mRNA was detected in spleen but not in bone marrow and peripheral blood leukocytes from naive mice. Thus, it was indicated that CRF-R1 was not produced constitutively by mature or immature neutrophils. Its production was rather triggered by inflammatory stimuli.  (+info)

Peripheral urocortin delays gastric emptying: role of CRF receptor 2. (3/723)

Urocortin, a new mammalian member of the corticotropin-releasing factor (CRF) family has been proposed to be the endogenous ligand for CRF receptor 2 (CRF-R2). We studied the influence of intravenous urocortin on gastric emptying and the role of CRF-R2 in peptide action and postoperative gastric ileus in conscious rats. The intravenous doses of rat CRF and rat urocortin producing 50% inhibition of gastric emptying were 2.5 and 1.1 microgram/kg, respectively. At these intravenous doses, CRF and urocortin have their actions fully reversed by the CRF-R1/CRF-R2 antagonist astressin at antagonist/agonist ratios of 5:1 and 67:1, respectively. Astressin (12 microgram/kg iv) completely prevented abdominal surgery-induced 54% inhibition of gastric emptying 3 h after surgery while having no effect on basal gastric emptying. The selective nonpeptide CRF-R1 antagonists antalarmin (20 mg/kg ip) and NBI-27914 (400 microgram/kg iv) did not influence intravenous CRF-, urocortin- or surgery-induced gastric stasis. These results as well as earlier ones showing that alpha-helical CRF9-41 (a CRF-R2 more selective antagonist) partly prevented postoperative ileus indicate that peripheral CRF-R2 may be primarily involved in intravenous urocortin-, CRF-, and abdominal surgery-induced gastric stasis.  (+info)

Mechanisms underlying the anti-inflammatory actions of central corticotropin-releasing factor. (4/723)

Immune activation of hypothalamic corticotropin-releasing factor (CRF) provides a negative feedback mechanism to modulate peripheral inflammatory responses. We investigated whether central CRF attenuates endothelial expression of intercellular adhesion molecule 1 (ICAM-1) and leukocyte recruitment during endotoxemia in rats and determined its mechanisms of action. As measured by intravital microscopy, lipopolysaccharide (LPS) induced a dose-dependent increase in leukocyte rolling, adhesion, and emigration in mesenteric venules, which was associated with upregulation of endothelial ICAM-1 expression. Intracisternal injection of CRF abrogated both the increased expression of ICAM-1 and leukocyte recruitment. Intravenous injection of the specific CRF receptor antagonist astressin did not modify leukocyte-endothelial cell interactions induced by a high dose of LPS but enhanced leukocyte adhesion induced by a low dose. Blockade of endogenous glucocorticoids but not alpha-melanocyte-stimulating hormone (alpha-MSH) receptors reversed the inhibitory action of CRF on leukocyte-endothelial cell interactions during endotoxemia. In conclusion, cerebral CRF blunts endothelial upregulation of ICAM-1 and attenuates the recruitment of leukocytes during endotoxemia. The anti-inflammatory effects of CRF are mediated by adrenocortical activation and additional mechanisms independent of alpha-MSH.  (+info)

Receptor binding, behavioral, and electrophysiological profiles of nonpeptide corticotropin-releasing factor subtype 1 receptor antagonists CRA1000 and CRA1001. (5/723)

Receptor binding, behavioral, and electrophysiological profiles of 2-[N-(2-methylthio-4-isopropylphenyl)-N-ethylamino]-4-[4-(3-flu orophe nyl)-1,2,3,6-tetrahydropyridin-1-yl)-6-methylpyrimidine (CRA1000) and 2-[N-(2-bromo-4-isopropylphenyl)-N-ethylamino]-4-[4-(3-fluoropheny l)- 1,2,3,6-tetrahydropyridin-1-yl)-6-methylpyrimidine (CRA1001), putative novel and selective antagonists for corticotropin-releasing factor1 (CRF1) receptor were examined. Both CRA1000 and CRA1001 inhibited 125I-ovine CRF binding to membranes of rat frontal cortex with IC50 values of 20.6 and 22.3 nM, respectively. Likewise, CRA1000 and CRA1001 inhibited 125I-ovine CRF binding to membranes of rat pituitary. In contrast, both CRA1000 and CRA1001 were without affinity for the CRF2beta receptor when examined using rat heart. In mice orally administered CRA1000 and CRA1001 reversed the swim stress-induced reduction of the time spent in the light area in the light/dark exploration task. In nonstress conditions, CRA1000 and CRA1001 were without effect on the time spent in the light area in the same task in mice. Orally administered CRA1000 and CRA1001 dose dependently reversed the effects of i.c.v. infusion of CRF on time spent in the open arms in the elevated plus-maze in rats. Lesioning of olfactory bulbs induced hyperemotionality, and this effect was inhibited by either acute or chronic oral administration of CRA1000 and CRA1001 in rats. The firing rate of locus coeruleus neurons was increased by i.c.v.-infused CRF. This excitation of locus coeruleus neurons was significantly blocked by pretreatment with i.v. administration of CRA1000 and CRA1001. CRA1000 and CRA1001 had no effects on the hexobarbital-induced anesthesia in mice, the rotarod test in mice, the spontaneous locomotor activity in mice, and a passive avoidance task in rats. These observations indicate that both CRA1000 and CRA1001 are selective and competitive CRF1 receptor antagonists with potent anxiolytic- and antidepressant-like properties in various experimental animal models, perhaps through inhibition of CRF1 receptors. CRA1000 and CRA1001 may prove effective for treating subjects with depression- and/or anxiety-related disorders without the side effects seen in the related currently prescribed medications.  (+info)

Prevention of stress-induced weight loss by third ventricle CRF receptor antagonist. (6/723)

We previously reported that rats exposed to repeated restraint (3 h/day for 3 days) experience temporary hypophagia and a sustained reduction in body weight compared with nonrestrained controls. Studies described here determined the involvement of central corticotropin-releasing factor (CRF) receptors in the initiation of this chronic response to acute stress. In experiment 1, Sprague-Dawley rats were fitted with cannulas in the lateral ventricle and infused with 50 micrograms of alphahCRF-(9-41) or saline immediately before restraint on each of the 3 days of restraint. The receptor antagonist inhibited hypophagia and weight loss on day 1 of restraint but not on days 2 and 3. In experiment 2, 10 micrograms of alphahCRF-(9-41) or saline were infused into the third ventricle immediately before each restraint. The receptor antagonist totally blocked stress-induced hypophagia and weight loss. These results demonstrate that CRF receptors located in or near the hypothalamus mediate the acute responses to stress that lead to a permanent change in the hormonal or metabolic processes that determine body weight and body composition.  (+info)

Differential regulation of the expression of corticotropin-releasing factor receptor type 2 (CRF2) in hypothalamus and amygdala of the immature rat by sensory input and food intake. (7/723)

The physiological consequences of activating corticotropin-releasing factor receptor type 2 (CRF2) are not fully understood. The neuroanatomic distribution of this CRF receptor family member is consistent with roles in mediating the actions of CRF and similar ligands on food intake control and integrative aspects of stress-related behaviors. However, CRF2 expression in the adult rat is not influenced by stress, corticosterone (CORT), or food intake. In immature rat we have demonstrated striking downregulation of CRF2mRNA in hypothalamic ventromedial nucleus (VMH) after 24 hr of maternal deprivation, a paradigm consisting of both physiological/psychological stress and food deprivation. The current study aimed to distinguish which element or elements of maternal deprivation govern CRF2mRNA expression by isolating the effects of food intake and discrete maternal sensory cues on CRF2mRNA levels in VMH and in reciprocally communicating amygdala nuclei. In maternally deprived pups, CRF2mRNA levels in VMH and basomedial (BMA) and medial (MEA) amygdala nuclei were 62, 72, and 102% of control levels, respectively. Sensory inputs of grooming and handling as well as of the pups' own suckling activity-but not food intake-fully restored CRF2mRNA expression in VMH. In contrast, all manipulations tended to increase CRF2mRNA levels in BMA of maternally deprived rats, and surrogate grooming increased CRF2mRNA expression significantly above that of nondeprived controls. CRF2mRNA expression was not influenced significantly by plasma adrenocorticotropic hormone (ACTH) and CORT levels. Thus, in the immature rat, (1) CRF2 expression is regulated differentially in hypothalamic and amygdala regions, and (2) CRF2mRNA levels in VMH are governed primarily by maternal or suckling-derived sensory input rather than food intake or peripheral stress hormones. These findings indicate a region-specific regulation of CRF2mRNA, supporting the participation of the receptor in neurochemically defined circuits integrating sensory cues to influence specific behavioral and visceral functions.  (+info)

Modulation of learning and anxiety by corticotropin-releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2. (8/723)

The differential modulation of learning and anxiety by corticotropin-releasing factor (CRF) through CRF receptor subtypes 1 (CRFR1) and 2 (CRFR2) is demonstrated. As learning paradigm, context- and tone-dependent fear conditioning of the mouse was used. Injection of CRF into the dorsal hippocampus before training enhanced learning through CRFR1 as demonstrated by the finding that this effect was prevented by the local injection of the unselective CRFR antagonist astressin, but not by the CRFR2-specific antagonist antisauvagine-30 (anti-Svg-30). In contrast, injection of CRF into the lateral intermediate septum impaired learning through CRFR2, as demonstrated by the ability of antisauvagine-30 to block this effect. When antisauvagine-30 was injected alone into the lateral intermediate septum, learning was enhanced. Such tonic control of learning was not observed when astressin or antisauvagine-30 was injected into the dorsal hippocampus. Injection of CRF after the training into the dorsal hippocampus and the lateral intermediate septum also enhanced and impaired learning, respectively. Thus, it was indicated that CRF acted on memory consolidation. It was concluded that the observed effects reflected changes of associative learning and not arousal, attention, or motivation. Although a dose of 20 pmol human/rat CRF was sufficient to affect learning significantly, a fivefold higher dose was required to induce anxiety by injection into the septum. Immobilization for 1 hr generated a stress response that included the induction of anxiety through septal CRFR2 and the subsequent enhancement of learning through hippocampal CRFR1. The involvement of either receptor subtype was demonstrated by region-specific injections of astressin and antisauvagine-30.  (+info)