Increased expression of fibroblast growth factor 8 in human breast cancer. (1/759)

Fibroblast growth factor 8 (FGF8) is an important developmental protein which is oncogenic and able to cooperate with wnt-1 to produce mouse mammary carcinoma. The level of expression of FGF8 mRNA was measured in 68 breast cancers and 24 non-malignant breast tissues. Elevated levels of FGF8 mRNA were found in malignant compared to non-malignant breast tissues with significantly more malignant tissues expressing FGF8 (P=0.019) at significantly higher levels (P=0.031). In situ hybridization of breast cancer tissues and analysis of purified populations of normal epithelial cells and breast cancer cell lines showed that malignant epithelial cells expressed FGF8 mRNA at high levels compared to non-malignant epithelial and myoepithelial cells and fibroblasts. Although two of the receptors which FGF8 binds to (FGFR2-IIIc, FGFR3-IIIc) are not expressed in breast cancer cells, an autocrine activation loop is possible since expression of fibroblast growth factor receptor (FGFR) 4 and FGFR1 are retained in malignant epithelial cells. This is the first member of the FGF family to have increased expression in breast cancer and a potential autocrine role in its progression.  (+info)

Differential expression assay of chromosome arm 8p genes identifies Frizzled-related (FRP1/FRZB) and Fibroblast Growth Factor Receptor 1 (FGFR1) as candidate breast cancer genes. (2/759)

Deletions and amplifications are frequent alterations of the short arm of chromosome 8 associated with various types of cancers, including breast cancers. This indicates the likely presence of tumor suppressor genes and oncogenes. In the present study, we have used the expressed sequence tag (EST) map of 8p11-21 to assemble a set of available cDNAs representing genes from this region. DNA arrays were prepared for expression analysis and search for genes potentially involved in breast cancer. Underexpresion in tumoral breast cells (versus normal breast) was observed for 15 transcripts. Among these, the Frizzled-related gene FRP1/FRZB, was turned off in 78% of breast carcinomas, suggesting that the lack of its product may be associated with malignant transformation. Overexpression in tumoral breast cells was observed for 13 genes. The FGFR1 gene, that encodes a tyrosine kinase receptor for members of the fibroblast growth factor family, was identified as a good candidate for one amplification unit. Taken together, our results demonstrate that such a strategy can rapidly identify genes with an altered pattern of expression and provide candidate genes for malignancies.  (+info)

Murine fibroblast growth factor receptor 1alpha isoforms mediate node regression and are essential for posterior mesoderm development. (3/759)

Alternative splicing in the fibroblast growth factor receptor 1 (Fgfr1) locus generates a variety of splicing isoforms, including FGFR1alpha isoforms, which contain three immunoglobulin-like loops in the extracellular domain of the receptor. It has been previously shown that embryos carrying targeted disruptions of all major isoforms die during gastrulation, displaying severe growth retardation and defective mesodermal structures. Here we selectively disrupted the FGFR1alpha isoforms and found that they play an essential role in posterior mesoderm formation during gastrulation. We show that the mutant embryos lack caudal somites, develop spina bifida, and die at 9.5-12.5 days of embryonic development because they are unable to establish embryonic circulation. The primary defect is a failure of axial mesoderm cell migration toward the posterior portions of the embryos during gastrulation, as revealed by regional marker analysis and DiI labeling. In contrast, the anterior migration of the notochord is unaffected and the embryonic structures rostral to the forelimb are relatively normal. These data demonstrate that FGF/FGFR1alpha signals are posteriorizing factors that control node regression and posterior embryonic development.  (+info)

Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. (4/759)

The subventricular zone (SVZ) of the adult mammalian forebrain contains kinetically distinct precursor populations that contribute new neurons to the olfactory bulb. Because among forebrain precursors there are stem-like cells that can be cultured in the presence of mitogens such as epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), we asked whether distinct subsets of stem-like cells coexist within the SVZ or whether the proliferation of a single type of SVZ stem-like cell is controlled by several GFs. We show that the latter is the case. Thus cells isolated from the SVZ coexpress the EGF and FGF receptors; by quantitative analysis, the number of stem-like cells isolated from the SVZ by either FGF2 or EGF is the same, whereas no additive effect occurs when these factors are used together. Furthermore, short-term administration of high-dose [3H]thymidine in vivo depletes both the EGF- and FGF2-responsive stem-like cell populations equally, showing they possess closely similar proliferation kinetics and likely belong to the constitutively proliferating SVZ compartment. By subcloning and population analysis, we demonstrate that responsiveness to more than one GF endows SVZ cells with an essential stem cell feature, the ability to vary self-renewal, that was until now undocumented in CNS stem-like cells. The multipotent stem cell-like population that expands slowly in the presence of FGF2 in culture switches to a faster growth mode when exposed to EGF alone and expands even faster when exposed to both GFs together. Analogous responses are observed when the GFs are used in the reverse order, and furthermore, these growth rate modifications are fully reversible.  (+info)

Fibroblast growth factor-1 (FGF-1) enhances IL-2 production and nuclear translocation of NF-kappaB in FGF receptor-bearing Jurkat T cells. (5/759)

Fibroblast growth factors (FGFs) are heparin-binding proteins crucial to embryogenesis, angiogenesis, and wound healing. FGF-1 is abundantly expressed in the synovium in rheumatoid arthritis and in rejecting allografts, sites of chronic immune-mediated inflammation. The frequency of FGF-1-responsive T cells is increased in the peripheral blood of these disorders, and a high percentage of infiltrating T cells in rheumatoid arthritis synovium express receptors for FGF-1. To understand the action of FGF-1 in T cells, studies were initiated in Jurkat T cells that express the signaling isoform of FGF receptor-1. These experiments show that FGF-1 stimulation of Jurkat T cells provides a second signal that augments TCR-mediated IL-2 production. Analogous to costimulation via CD28, this activity is mediated through activation of Rel/kappaB, a family of transcription factors known to regulate IL-2 and other activation-inducible proteins. FGF-1 alone induces modest nuclear translocation of kappaB-binding proteins, and this translocation is enhanced by the combination of anti-CD3 and FGF-1. This NF-kappaB binding complex is composed of transcriptionally active p65(RelA)/p50 heterodimers and results primarily from the targeted degradation of IkappaB-alpha, an inhibitor that sequesters Rel/kappaB in the cytoplasm. These data are the first to show a connection between FGF-1 signaling and NF-kappaB activation outside of embryonic development. The signaling events that link FGF receptor-1 engagement and NF-kappaB activation in Jurkat are probably distinct from the CD28 costimulation pathway, since FGF-1-induced Rel/kappaB binding proteins do not contain significant levels of c-Rel and are not identical with the CD28 response complex.  (+info)

Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. (6/759)

Fibroblast growth factors (FGFs) play an important role in the growth and maintenance of the normal prostate. There is increasing evidence from both animal models and analysis of human prostate cancer cell lines that alterations of FGFs and/or FGF receptors (FGFRs) may play an important role in prostate cancer progression. To better define the role of FGF2 and FGF7 in human prostate cancer in vivo, we have quantified these two growth factors in clinically localized human prostate cancers and uninvolved prostate by ELISA and Western blotting and determined their localization by immunohistochemistry. The expression of two of the primary receptors for these growth factors, FGFR-1 and FGFR-2, were also analyzed by immunohistochemistry and Western blotting in these same samples. We have found that FGF2 is significantly increased in prostate cancers when compared with uninvolved prostate and that the FGF2 is present in the stromal fibroblasts and endothelial cells but not the cancer cells. In addition, we have observed overexpression of both FGFR-1 and FGFR-2 in the prostate cancer epithelial cells in a subset of prostate cancers and that such overexpression is correlated with poor differentiation. Thus, there is both an increase in FGF2 concentration in prostate cancers and an increased expression of a receptor capable of responding to this growth factor, establishing a potential paracrine stimulation of prostate cancer cells by the surrounding stromal cells, which may play an important role in prostate cancer progression.  (+info)

Contribution of Src and Ras pathways in FGF-2 induced endothelial cell differentiation. (7/759)

We have examined fibroblast growth factor (FGF) receptor-1 mediated signal transduction in differentiation of endothelial cells (EC). The activated FGFR-1 couples to Ras through two adaptor proteins, FRS2 and Shc. In FGF-2 treated proliferating EC, FRS2 as well as Shc are tyrosine phosphorylated and interact with Grb2. In contrast, in FGF-2 treated differentiating cells, Shc, but not FRS2, is engaged in Grb2-interactions. Sustained MAP kinase activity has previously been implicated in differentiation. In FGF stimulated proliferating and differentiating endothelial cells, the MAP kinase Erk2 is activated in a sustained manner. Inhibition of MEK and MAP kinase activity by PD98059 treatment of cells, still allows EC tube formation. The FGFR-1 mediates activation of protein kinase C (PKC) through direct binding and activation of phospholipase C-gamma (PLC-gamma), and has also been shown to activate the cytoplasmic tyrosine kinase Src. Treatment of the cells with the PKC inhibitor bisindolylmaleimide does not prevent tube formation. In contrast, Src kinase activity is a prerequisite for EC differentiation, since treatment of the cells with PP1, a Src family specific inhibitor, abrogates tube formation. In differentiating EC, FGF-2 induces complex formation between Src and focal adhesion kinase (FAK). These data indicate that the Ras pathway is initiated via Shc or FRS2, dependent on the cellular program. Blocking the function of Src family kinases, attenuates differentiation.  (+info)

p38 mitogen-activated protein kinase activation is required for fibroblast growth factor-2-stimulated cell proliferation but not differentiation. (8/759)

Basic fibroblast growth factor (FGF-2) is a member of a family of polypeptides that have roles in a wide range of biological processes. To determine why different cell types show distinct responses to treatment with FGF-2, the array of FGF receptors present on the surface of a cell which differentiates in response to FGF-2 (PC12 cells) was compared with that present on the surface of a cell that proliferates in response to FGF-2 (Swiss 3T3 fibroblasts). Both cell types express exclusively FGFR1, suggesting that there are cell type-specific FGFR1 signaling pathways. Since mitogen-activated protein kinases function as mediators of cellular responses to a variety of stimuli, the roles of these proteins in FGF-mediated responses were examined. FGF-2 activates extracellular signal-regulated kinases with similar kinetics in both fibroblasts and PC12 cells, and a specific inhibitor of extracellular signal-regulated kinase activation blocks differentiation but has little effect on proliferation. In contrast, while p38 mitogen-activated protein kinase is activated weakly and transiently in PC12 cells treated with FGF-2, a much stronger and sustained activation of this kinase is seen in FGF-2-treated fibroblasts. Furthermore, specific inhibitors of this kinase block proliferation but have no effect on differentiation. This effect on proliferation is specific for FGF-2 since the same concentrations of inhibitors have little or no effect on proliferation induced by serum.  (+info)