Possible role of serotonin in Merkel-like basal cells of the taste buds of the frog, Rana nigromaculata. (1/700)

Merkel-like basal cells in the taste buds of the frog were examined by fluorescence histochemistry, immunohistochemistry and electron microscopy. There were about 16-20 basal cells arranged in a radial fashion at the base of each taste bud. These cells were strongly immunopositive for serotonin antiserum. They were characterised by the presence of numerous dense-cored granules in the cytoplasm ranging from 80 to 120 nm in diameter, and of microvilli protruding from the cell surface. For 4 mo after sensory denervation by cutting the gustatory nerves, all cell types of the taste bud were well preserved and maintained their fine structure. Even at 4 mo after denervation, the basal cells exhibited a strong immunoreaction with serotonin antiserum. To investigate the function of serotonin in the basal cells in taste bud function, serotonin deficiency was induced by administration of p-chlorophenylalanine (PCPA), an inhibitor of tryptophan hydroxylase, and of p-chloroamphetamine (PCA), a depletor of serotonin. After administration of these agents to normal and denervated frogs for 2 wk, a marked decrease, or complete absence, of immunoreactivity for serotonin was observed in the basal cells. Ultrastructurally, degenerative changes were observed in both types of frog; numerous lysosome-like myelin bodies were found in all cell types of the taste buds. The number of dense-cored granules in the basal cells also was greatly decreased by treatment with these drugs. Serotonin in Merkel-like basal cells appears to have a trophic role in maintenance of the morphological integrity of frog taste bud cells.  (+info)

Comparison of local anesthetic activities between optical isomers of cis-1-benzoyloxy-2-dimethylamino-1,2,3,4-tetrahydronaphthalene. (2/700)

The optical isomers of cis-1-benzoyloxy-2-dimethylamino-1,2,3,4-tetrahydronaphthalene (YAU-17) were compared for their local anesthetic activity, acute toxicity, spasmolytic activity, and partition coefficient between chloroform and phosphate buffer. 1-YAU-17 was more active than d-YAU-17 in blocking the conduction of action potentials in isolated frog sciatic nerves. The difference in local anesthetic activities between the optical isomers was further substantiated by in vivo tests for corneal anesthesia, intracutaneous anesthesia and sciatic nerve block in quinea-pigs. Similarly, the i.v. injection to mice revealed a higher toxicity for 1-YAU-17 as compared to its d-isomer. In these tests, the potency ratios of the enantiomers ranged from 2 to 4, and the racemate had an intermediate potency. On the contrary, no difference among the compounds was found in their liposolubility, partition coefficient, and spasmolytic activity examined with isolated guinea-pig ileum. These results indicate that the steric factors play an important role in the production of different local anesthetic activities between the optical isomers of YAU-17, and their local anesthetic potency tends to be correlated to their intravenous acute toxicity but not to their spasmolytic activity.  (+info)

Potency and mechanism of action of E4021, a type 5 phosphodiesterase isozyme-selective inhibitor, on the photoreceptor phosphodiesterase depend on the state of activation of the enzyme. (3/700)

The ability of inhibitors selective for the type 5 phosphodiesterase isozyme (PDE5) to act on the photoreceptor PDE isozyme (PDE6, the central effector enzyme for visual transduction) is poorly understood. Because PDE5 inhibitors are currently used as therapeutic agents, it is important to assess the potency and mechanism of action of this class of PDE inhibitor on PDE6. We show that E4021 (sodium 1-[6-chloro-4-(3, 4-methylenedioxybenzyl)-aminoquinazolin-2-yl]piperidine-4-ca rboxylate sesquihydrate) inhibits activated PDE6 (KI = 1.7 nM) as potently as PDE5. This makes E4021 the most potent inhibitor of PDE6 discovered to date. The effectiveness of E4021 to inhibit nonactivated PDE6 (with bound inhibitory gamma subunits) is reduced 40-fold compared with the activated enzyme. Furthermore, at intermediate E4021 concentrations and high cGMP concentrations, nonactivated PDE undergoes activation of cGMP hydrolysis rather than inhibition. We demonstrate direct competition of E4021 and the gamma subunits for binding to the catalytic site. Measurements of cGMP binding to noncatalytic regulatory sites on the catalytic subunits of PDE6 rule out an allosteric effect of E4021 by direct binding to these noncatalytic sites. We conclude that E4021 is a competitive inhibitor of cGMP hydrolysis and that the gamma subunit also competes with both E4021 and substrate for catalytic site binding. An understanding of the effects of PDE5-targeted drugs on retinal PDE6 requires a knowledge of the complex interactions among substrate, drug, and inhibitory gamma subunit at the catalytic site of both nonactivated and activated forms of PDE6.  (+info)

Spontaneous heterosis in larval life-history traits of hemiclonal frog hybrids. (4/700)

European water frog hybrids Rana esculenta (Rana ridibunda x Rana lessonae) reproduce hemiclonally, transmitting only their ridibunda genome to gametes. We compared fitness-related larval life-history traits of natural R. esculenta from Poland with those of the two sympatric parental species and of newly generated F1 hybrids. Compared with either parental species, F1 hybrid offspring had higher survival, higher early growth rates, a more advanced developmental stage by day 49, and earlier metamorphosis, but similar mass at metamorphosis. R. esculenta from natural lineages had trait values intermediate between those of F1 offspring and of the two parental species. The data support earlier observations on natural R. esculenta that had faster larval growth, earlier metamorphosis, and higher resistance to hypoxic conditions compared with either parental species. Observing larval heterosis in F1 hybrids in survival, growth rate, and time to metamorphosis, however, at an even higher degree than in hybrids from natural lineages, demonstrates that heterosis is spontaneous and results from hybridity per se rather than from subsequent interclonal selection; in natural lineages the effects of hybridity and of clonal history are confounded. This is compelling evidence for spontaneous heterosis in hybrid clonals. Results on hemiclonal fish hybrids (Poeciliopsis) showed no spontaneous heterosis; thus, our frog data are not applicable to all hybrid clonals. Our data do show, however, that heterosis is an important potential source for the extensively observed ecological success of hybrid clonals. We suggest that heterosis and interclonal selection together shape fitness of natural R. esculenta lineages.  (+info)

Evectins: vesicular proteins that carry a pleckstrin homology domain and localize to post-Golgi membranes. (5/700)

We have identified two vesicular proteins, designated evectin (evt)-1 and -2. These proteins are approximately 25 kDa in molecular mass, lack a cleaved N-terminal signal sequence, and appear to be inserted into membranes through a C-terminal hydrophobic anchor. They also carry a pleckstrin homology domain at their N termini, which potentially couples them to signal transduction pathways that result in the production of lipid second messengers. evt-1 is specific to the nervous system, where it is expressed in photoreceptors and myelinating glia, polarized cell types in which plasma membrane biosynthesis is prodigious and regulated; in contrast, evt-2 is widely expressed in both neural and nonneural tissues. In photoreceptors, evt-1 localizes to rhodopsin-bearing membranes of the post-Golgi, an important transport compartment for which specific molecular markers have heretofore been lacking. The structure and subcellular distribution of evt-1 strongly implicate this protein as a mediator of post-Golgi trafficking in cells that produce large membrane-rich organelles. Its restricted cellular distribution and genetic locus make it a candidate gene for the inherited human retinopathy autosomal dominant familial exudative vitreoretinopathy and suggest that it also may be a susceptibility gene for multiple sclerosis.  (+info)

Morphological clues from multilegged frogs: are retinoids to blame? (6/700)

Morphological analysis was performed on multilegged deformed frogs representing five species from 12 different localities in California, Oregon, Arizona, and New York. The pattern of duplicated limbs was consistent with mechanical perturbation by trematode infestation but not with the effects of retinoids.  (+info)

Cloning and expression of the chicken type 2 iodothyronine 5'-deiodinase. (7/700)

The type 2 iodothyronine deiodinase (D2) is critical for the intracellular production of 3,5,3'-triiodothyronine from thyroxine. The D2 mRNA of higher vertebrates is over 6 kilobases (kb), and no complete cDNA clones have been reported. Using 5'- and 3'-rapid amplification of cDNA ends and two cDNA libraries, we have cloned the 6094-base pair full-length chicken D2 cDNA. The deduced protein is approximately 31 kDa and contains two in-frame UGA codons presumably encoding selenocysteine. One of these is in the highly conserved active catalytic center; the other is near the carboxyl terminus. Unusual features of the cDNA include a selenocysteine insertion sequence element approximately 4.8 kb 3' to the UGA codon in the active center and three short open reading frames in the 5'-untranslated region. The Km of D2 is approximately 1.0 nM for thyroxine, and the reaction is insensitive to inhibition by 6-n-propylthiouracil. Chicken D2 is expressed as a single transcript of approximately 6 kb in different brain regions and in the thyroid and lung. Hypothyroidism increases D2 mRNA in the telencephalon. Unlike in mammals, D2 mRNA and activity are expressed in the liver of the chicken, suggesting a role for D2 in the generation of plasma 3,5,3'-triiodothyronine in this species.  (+info)

Gli proteins encode context-dependent positive and negative functions: implications for development and disease. (8/700)

Several lines of evidence implicate zinc finger proteins of the Gli family in the final steps of Hedgehog signaling in normal development and disease. C-terminally truncated mutant GLI3 proteins are also associated with human syndromes, but it is not clear whether these C-terminally truncated Gli proteins fulfil the same function as full-length ones. Here, structure-function analyses of Gli proteins have been performed using floor plate and neuronal induction assays in frog embryos, as well as induction of alkaline phosphatase (AP) in SHH-responsive mouse C3H10T1/2 (10T1/2) cells. These assays show that C-terminal sequences are required for positive inducing activity and cytoplasmic localization, whereas N-terminal sequences determine dominant negative function and nuclear localization. Analyses of nuclear targeted Gli1 and Gli2 proteins suggest that both activator and dominant negative proteins are modified forms. In embryos and COS cells, tagged Gli cDNAs yield C-terminally deleted forms similar to that of Ci. These results thus provide a molecular basis for the human Polydactyly type A and Pallister-Hall Syndrome phenotypes, derived from the deregulated production of C-terminally truncated GLI3 proteins. Analyses of full-length Gli function in 10T1/2 cells suggest that nuclear localization of activating forms is a regulated event and show that only Gli1 mimics SHH in inducing AP activity. Moreover, full-length Gli3 and all C-terminally truncated forms act antagonistically whereas Gli2 is inactive in this assay. In 10T1/2 cells, protein kinase A (PKA), a known inhibitor of Hh signaling, promotes Gli3 repressor formation and inhibits Gli1 function. Together, these findings suggest a context-dependent functional divergence of Gli protein function, in which a cell represses Gli3 and activates Gli1/2 prevents the formation of repressor Gli forms to respond to Shh. Interpretation of Hh signals by Gli proteins therefore appears to involve a fine balance of divergent functions within each and among different Gli proteins, the misregulation of which has profound biological consequences.  (+info)