Zygosaccharomyces lentus sp. nov., a new member of the yeast genus Zygosaccharomyces Barker. (1/1400)

Unusual growth characteristics of a spoilage yeast, originally isolated from spoiled whole-orange drink and previously identified as Zygosaccharomyces bailii, prompted careful re-examination of its taxonomic position. Small-subunit rRNA gene sequences were determined for this strain and for four other strains also originally described as Z. bailii but which, in contrast to other strains of this species, grew poorly or not at all under aerobic conditions with agitation, failed to grow in the presence of 1% acetic acid and failed to grow at 30 degrees C. Comparative sequence analysis revealed that these strains represented a phylogenetically distinct taxon closely related to, but distinct from, Z. bailii and Zygosaccharomyces bisporus. Furthermore, sequence analysis of the internal transcribed spacer (ITS) region showed that, while all five strains had identical ITS2 sequences, they could be subdivided into two groups based on ITS1 sequences. Despite such minor inter-strain sequence variation, these yeasts could readily be distinguished from all other currently described Zygosaccharomyces species by using ITS sequences. On the basis of the phylogenetic results presented, a new species comprising the five strains, Zygosaccharomyces lentus sp. nov., is described and supporting physiological data are discussed, including a demonstration that growth of this species is particularly sensitive to the presence of oxygen. The type strain of Z. lentus is NCYC D2627T.  (+info)

Semi-nested, multiplex polymerase chain reaction for detection of human malaria parasites and evidence of Plasmodium vivax infection in Equatorial Guinea. (2/1400)

A semi-nested, multiplex polymerase chain reaction (PCR) based on the amplification of the sequences of the 18S small subunit ribosomal RNA (ssrRNA) gene was tested in a field trial in Equatorial Guinea (a hyperendemic focus of malaria in west central Africa). The method uses a primary PCR amplification reaction with a universal reverse primer and two forward primers specific for the genus Plasmodium and to mammals (the mammalian-specific primer was included as a positive control to distinguish uninfected cases from inhibition of the PCR). The second amplification is carried out with the same Plasmodium genus-specific forward primer and four specific reverse primers for each human Plasmodium species. The PCR amplified products are differentiated by fragment size after electrophoresis on a 2% agarose gel. Four villages from three regions of the island of Bioko (Equatorial Guinea) and two suspected Plasmodium vivax-P. ovale infections from the hospital of Malabo were tested by microscopy and PCR. The PCR method showed greater sensitivity and specificity than microscopic examination and confirmed the existence of a focus of P. vivax infections in Equatorial Guinea suspected by microscopic examination. It also provided evidence of several mixed infections, mainly P. falciparum and P. malariae, the two predominant species causing malaria in Equatorial Guinea.  (+info)

Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. (3/1400)

Because of their simple organization the Acoela have been considered to be either primitive bilaterians or descendants of coelomates through secondary loss of derived features. Sequence data of 18S ribosomal DNA genes from non-fast evolving species of acoels and other metazoans reveal that this group does not belong to the Platyhelminthes but represents the extant members of the earliest divergent Bilateria, an interpretation that is supported by recent studies on the embryonic cleavage pattern and nervous system of acoels. This study has implications for understanding the evolution of major body plans, and for perceptions of the Cambrian evolutionary explosion.  (+info)

Nop58p is a common component of the box C+D snoRNPs that is required for snoRNA stability. (4/1400)

Eukaryotic nucleoli contain a large family of box C+D small nucleolar RNA (snoRNA) species, all of which are associated with a common protein Nop1p/fibrillarin. Nop58p was identified in a screen for synthetic lethality with Nop1p and shown to be an essential nucleolar protein. Here we report that a Protein A-tagged version of Nop58p coprecipitates all tested box C+D snoRNAs and that genetic depletion of Nop58p leads to the loss of all tested box C+D snoRNAs. The box H+ACA class of snoRNAs are not coprecipitated with Nop58p, and are not codepleted. The yeast box C+D snoRNAs include two species, U3 and U14, that are required for the early cleavages in pre-rRNA processing. Consistent with this, Nop58p depletion leads to a strong inhibition of pre-rRNA processing and 18S rRNA synthesis. Unexpectedly, depletion of Nop58p leads to the accumulation of 3' extended forms of U3 and U24, showing that the protein is also involved in snoRNA synthesis. Nop58p is the second common component of the box C+D snoRNPs to be identified and the first to be shown to be required for the stability and for the synthesis of these snoRNAs.  (+info)

The Cryptosporidium "mouse" genotype is conserved across geographic areas. (5/1400)

A 298-bp region of the Cryptosporidium parvum 18S rRNA gene and a 390-bp region of the acetyl coenzyme A synthetase gene were sequenced for a range of Cryptosporidium isolates from wild house mice (Mus domesticus), a bat (Myotus adversus), and cattle from different geographical areas. Previous research has identified a distinct genotype, referred to as the "mouse"-derived Cryptosporidium genotype, common to isolates from Australian mice. Comparison of a wider range of Australian mouse isolates with United Kingdom and Spanish isolates from mice and cattle and also an Australian bat-derived Cryptosporidium isolate revealed that the "mouse" genotype is conserved across geographic areas. Mice are also susceptible to infection with the "cattle" Cryptosporidium genotype, which has important implications for their role as reservoirs of infection for humans and domestic animals.  (+info)

Cystofilobasidiales, a new order of basidiomycetous yeasts. (6/1400)

The order Cystofilobasidiales is described for teleomorphic basidiomycetous yeasts with holobasidia and teliospores. Their septa have dolipores, but lack parenthesomes. D-Glucuronate, nitrate and nitrite are assimilated and myoinositol is usually assimilated. Coenzyme Q has 8 or 10 isoprenologues. 25S and 18S rDNA sequence analysis indicates a monophyletic branch within the Tremellomycetidae of the Hymenomycetes. Cystofilobasidium is the type genus.  (+info)

Simultaneous detection of bovine Theileria and Babesia species by reverse line blot hybridization. (7/1400)

A reverse line blot (RLB) assay was developed for the identification of cattle carrying different species of Theileria and Babesia simultaneously. We included Theileria annulata, T. parva, T. mutans, T. taurotragi, and T. velifera in the assay, as well as parasites belonging to the T. sergenti-T. buffeli-T. orientalis group. The Babesia species included were Babesia bovis, B. bigemina, and B. divergens. The assay employs one set of primers for specific amplification of the rRNA gene V4 hypervariable regions of all Theileria and Babesia species. PCR products obtained from blood samples were hybridized to a membrane onto which nine species-specific oligonucleotides were covalently linked. Cross-reactions were not observed between any of the tested species. No DNA sequences from Bos taurus or other hemoparasites (Trypanosoma species, Cowdria ruminantium, Anaplasma marginale, and Ehrlichia species) were amplified. The sensitivity of the assay was determined at 0.000001% parasitemia, enabling detection of the carrier state of most parasites. Mixed DNAs from five different parasites were correctly identified. Moreover, blood samples from cattle experimentally infected with two different parasites reacted only with the corresponding species-specific oligonucleotides. Finally, RLB was used to screen blood samples collected from carrier cattle in two regions of Spain. T. annulata, T. orientalis, and B. bigemina were identified in these samples. In conclusion, the RLB is a versatile technique for simultaneous detection of all bovine tick-borne protozoan parasites. We recommend its use for integrated epidemiological monitoring of tick-borne disease, since RLB can also be used for screening ticks and can easily be expanded to include additional hemoparasite species.  (+info)

The 5' end of the 18S rRNA can be positioned from within the mature rRNA. (8/1400)

In yeast, the 5' end of the mature 18S rRNA is generated by endonucleolytic cleavage at site A1, the position of which is specified by two distinct signals. An evolutionarily conserved sequence immediately upstream of the cleavage site has previously been shown to constitute one of these signals. We report here that a conserved stem-loop structure within the 5' region of the 18S rRNA is recognized as a second positioning signal. Mutations predicted to either extend or destabilize the stem inhibited the normal positioning of site A1 from within the 18S rRNA sequence, as did substitution of the loop nucleotides. In addition, these mutations destabilized the mature 18S rRNA, indicating that recognition of the stem-loop structure is also required for 18S rRNA stability. Several mutations tested reduced the efficiency of pre-rRNA cleavage at site A1. There was, however, a poor correlation between the effects of the different mutations on the efficiency of cleavage and on the choice of cleavage site, indicating that these involve recognition of the stem-loop region by distinct factors. In contrast, the cleavages at sites A1 and A2 are coupled and the positioning signals appear to be similar, suggesting that both cleavages may be carried out by the same endonuclease.  (+info)