The mitogen-activated protein kinase signaling pathway stimulates mos mRNA cytoplasmic polyadenylation during Xenopus oocyte maturation. (1/201)

The Mos protein kinase is a key regulator of vertebrate oocyte maturation. Oocyte-specific Mos protein expression is subject to translational control. In the frog Xenopus, the translation of Mos protein requires the progesterone-induced polyadenylation of the maternal Mos mRNA, which is present in the oocyte cytoplasm. Both the Xenopus p42 mitogen-activated protein kinase (MAPK) and maturation-promoting factor (MPF) signaling pathways have been proposed to mediate progesterone-stimulated oocyte maturation. In this study, we have determined the relative contributions of the MAPK and MPF signaling pathways to Mos mRNA polyadenylation. We report that progesterone-induced Mos mRNA polyadenylation was attenuated in oocytes expressing the MAPK phosphatase rVH6. Moreover, inhibition of MAPK signaling blocked progesterone-induced Mos protein accumulation. Activation of the MAPK pathway by injection of RNA encoding Mos was sufficient to induce both the polyadenylation of synthetic Mos mRNA substrates and the accumulation of endogenous Mos protein in the absence of MPF signaling. Activation of MPF, by injection of cyclin B1 RNA or purified cyclin B1 protein, also induced both Mos protein accumulation and Mos mRNA polyadenylation. However, this action of MPF required MAPK activity. By contrast, the cytoplasmic polyadenylation of maternal cyclin B1 mRNA was stimulated by MPF in a MAPK-independent manner, thus revealing a differential regulation of maternal mRNA polyadenylation by the MAPK and MPF signaling pathways. We propose that MAPK-stimulated Mos mRNA cytoplasmic polyadenylation is a key component of the positive-feedback loop, which contributes to the all-or-none process of oocyte maturation.  (+info)

Mos positively regulates Xe-Wee1 to lengthen the first mitotic cell cycle of Xenopus. (2/201)

Several key developmental events occur in the first mitotic cell cycle of Xenopus; consequently this cycle has two gap phases and is approximately 60-75 min in length. In contrast, embryonic cycles 2-12 consist only of S and M phases and are 30 min in length. Xe-Wee1 and Mos are translated and degraded in a developmentally regulated manner. Significantly, both proteins are present in the first cell cycle. We showed previously that the expression of nondegradable Mos, during early interphase, delays the onset of M phase in the early embryonic cell cycles. Here we report that Xe-Wee1 is required for the Mos-mediated M-phase delay. We find that Xe-Wee1 tyrosine autophosphorylation positively regulates Xe-Wee1 and is only detected in the first 30 min of the first cell cycle. The level and duration of Xe-Wee1 tyrosine phosphorylation is elevated significantly when the first cell cycle is elongated with nondegradable Mos. Importantly, we show that the tyrosine phosphorylation of Xe-Wee1 is required for the Mos-mediated M-phase delay. These findings indicate that Mos positively regulates Xe-Wee1 to generate the G2 phase in the first cell cycle and establish a direct link between the MAPK signal transduction pathway and Wee1 in vertebrates.  (+info)

Testis-specific TTF-D binds to single-stranded DNA in the c-mos and Odf1 promoters and activates Odf1. (3/201)

We recently identified testis-specific nuclear factor binding sites in the testis-specific promoters of the c-mos gene and the Odf1 gene, which are 80% identical. Here we characterize a testis-specific nuclear factor, TTF-D, which is able to complex with both binding sites and stimulates Odf1 promoter activity. TTF-D is detectable in mouse testis as early as day 11 postpartum and contains three peptides of 22, 25, and 35 kDa in size. Surprisingly, TTF-D binds specifically to its cognate double-stranded DNA binding site as well as to its single-stranded DNA binding site. Both double-stranded and single-stranded binding site oligonucleotide DNA can specifically repress Odf1 promoter activity. Our results suggest that TTF-D is involved in positive transcription regulation of a pre-meiotic and a post-meiotic gene in the testis.  (+info)

Tissue-specific characterisation of DNA methylation in the gonad-specific proto-oncogene, c-mos, in the male laboratory mouse. (4/201)

The proto-oncogene, c-mos, which is expressed only in the germ cells of both testis and ovary, plays an important role in meiotic maturation of these cells. In this research, the methylation status of several CpG sites, present both upstream and within the coding region of the c-mos gene, has been studied. The HpaII and HhaI sites examined in the 5' half of the coding region were unmethylated in both the c-mos expressing and non-expressing tissues. A HhaI site, h3, present 380bp downstream of the transcription start site, was unmethylated in germ cells, but was partially methylated in the somatic tissues, inversely correlating with the expression status of the gene. In contrast to these tissues, in the mouse fibroblast cell line L929, all the analysed sites were completely methylated.  (+info)

Evidence of an interaction between Mos and Hsp70: a role of the Mos residue serine 3 in mediating Hsp70 association. (5/201)

c-Mos is a germ cell-specific MAP kinase kinase kinase (MAPKKK) that plays an essential role during meiotic divisions of oocytes. c-Mos is a key component of an activity, cytostatic factor, required for metaphase II arrest of unfertilized eggs in vertebrates. To understand the regulation of c-Mos, we are investigating c-Mos-interacting proteins. We provide evidence that mouse c-Mos binds to Hsp70, a molecular chaperone. Hsp70 was found to associate with Mos ectopically expressed in COS-1 cells. Mos-Hsp70 complexes could be immunoprecipitated with both Mos and Hsp70 antibodies. Despite a low-abundance of Mos, the Hsp70 antibody immunoprecipitated Mos as the major protein. Of importance, the Mos protein present in anti-Hsp70 immunoprecipitates functioned as an active MAPKKK indicating that it is not grossly misfolded. It is known that c-Mos protein kinase activity in cell extracts of transfected COS-1 or NIH3T3 cells is labile. We found that the inclusion of adenosine triphosphate (ATP) in cell extracts protected against the loss of Mos kinase activity. In the absence of ATP from cell extracts, protein kinase activity of Mos was lost within 6 h on ice even though the Mos protein was not degraded and remained bound to Hsp70. Based on our identification of c-Mos-Hsp70 interaction, one of the roles of ATP may be to assist the regulation of c-Mos via ATP involvement in the protein-folding function of Hsp70 and possibly other molecular chaperones. We also detected by coimmunoprecipitation a physical association between endogenous c-Mos and Hsp70 in Xenopus eggs. To provide further evidence for the functional significance of Hsp70 interaction to Mos function, we show that the residue serine 3 in Mos, which is important for the regulation of protein kinase activity of Mos is also important for Hsp70 association.  (+info)

Evidence for an important role of serine 16 and its phosphorylation in the stabilization of c-Mos. (6/201)

The c-Mos serine/threonine protein kinase is an essential component of cytostatic factor (CSF), which is required for metaphase II arrest of eggs in vertebrates. Previously, we showed that c-Mos residue Ser-16 is phosphorylated in the ts110 Mo-MuSV-encoded Gag-Mos fusion protein. Here we provide evidence that Mos is phosphorylated at Ser-16 in transfected COS-1 cells. To investigate the role of this phosphorylation, Ser-16 was substituted with alanine or glutamic acid in full-length v-Mos (an Env-Mos fusion protein that contains 31 additional amino acids at the amino terminus of c-Mos), its mouse c-Mos equivalent version (v-Mos residues 32-374, hereafter referred to as Mos), and mouse c-Mos. Constructs expressing mutant versions of Mos were transfected into COS-1 and NIH3T3 cells in a transient and stable manner, respectively. Synthesis and proteolysis of Mos were evaluated by pulse-chase analysis of 35S-methionine-labeled proteins. Our findings indicate that the S16A mutant of Mos was highly unstable. It accumulated to approximately 10% of the level of wild-type Mos or its S16E mutant. In addition, the S16A mutation but not the S16E mutation inhibited Mos interaction with a cellular protein, p35, suggesting that phosphorylation at Ser-16 may promote Mos interaction with p35. As expected from its destabilizing effect, the S16A mutation caused a dramatic decrease in the cellular transforming activity of Mos (determined by soft-agar colony-formation assay with the stably transfected NIH3T3 cells), which is known to correlate with its CSF function. Efficient ubiquitin-mediated proteolysis of c-Mos requires proline as the second residue from the amino-terminus. In contrast to Mos, neither the stability nor protein kinase activity of v-Mos (in which c-Mos residue Pro-2 becomes Pro-33) was affected by the S16A mutation. To provide further proof that, similar to c-Mos, the S16A mutant is recognized by the proteolysis system through Pro-2, we show that the effect of the S16A mutation is reversed by the Pro-2-Ala mutation. Thus, our results indicate that Ser-16 has an important role in the regulation of c-Mos and that phosphorylation at Ser-16 may inhibit proteolysis of c-Mos.  (+info)

The role of nucleotide excision repair in protecting embryonic stem cells from genotoxic effects of UV-induced DNA damage. (7/201)

In this study the role of nucleotide excision repair (NER) in protecting mouse embryonic stem (ES) cells against the genotoxic effects of UV-photolesions was analysed. Repair of cyclobutane pyrimidine dimers (CPD) in transcribed genes could not be detected whereas the removal of (6-4) photoproducts (6-4PP) was incomplete, already reaching its maximum (30%) 4 h after irradiation. Measurements of repair replication revealed a saturation of NER activity at UV doses >5 J/m2 while at a lower dose (2.5 J/m2) the repair kinetics were similar to those in murine embryonic fibroblasts (MEFs). Cytotoxic and mutagenic effects of photolesions were determined in ES cells differing in NER activity. ERCC1-deficient ES cells were hypermutable (10-fold) compared to wild-type cells, indicating that at physiologically relevant doses ES cells efficiently remove photolesions. The effect of the NER deficiency on cytoxicity was only 2-fold. Exposure to high UV doses (10 J/m2) resulted in a rapid and massive induction of apoptosis. Possibly, to avoid the accumulation of mutated cells, ES cells rely on the induction of a strong apoptotic response with a simultaneous shutting down of NER activity.  (+info)

Inhibition of protein tyrosine phosphatases blocks calcium-induced activation of metaphase II-arrested oocytes of Xenopus laevis. (8/201)

We have studied the effect of a protein tyrosine phosphatases (PTP) inhibitor on calcium-induced activation of Xenopus laevis oocytes arrested at metaphase II. Ammonium molybdate microinjection blocked pronucleus formation following A23187 treatment while cortical granules still underwent exocytosis. Pronuclei still occurred in ammonium molybdate-injected oocytes following 6-DMAP addition. Changes that usually occurred following A23187 exposure were inhibited in the presence of ammonium molybdate in the oocyte: MAPK dephosphorylation, p34(cdc2) rephosphorylation and cyclin B2 and p39(mos) proteolysis. These results suggest that a PTP is involved in the activation of the ubiquitin-dependent degradation machinery.  (+info)