Loading...
(1/16369) Inducible NO synthase: role in cellular signalling.

The discovery of endothelium-derived relaxing factor and its identification as nitric oxide (NO) was one of the most exciting discoveries of biomedical research in the 1980s. Besides its potent vasodilatory effects, NO was found under certain circumstances to be responsible for the killing of microorganisms and tumour cells by activated macrophages and to act as a novel, unconventional type of neurotransmitter. In 1992, Science picked NO as the 'Molecule of the Year', and over the past years NO has become established as a universal intercellular messenger that acutely affects important signalling pathways and, on a more long-term scale, modulates gene expression in target cells. These actions will form the focus of the present review.  (+info)

(2/16369) JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development.

BACKGROUND: The Jun N-terminal kinase (JNK) signaling pathway has been implicated in cell proliferation and apoptosis, but its function seems to depend on the cell type and inducing signal. In T cells, JNK has been implicated in both antigen-induced activation and apoptosis. RESULTS: We generated mice lacking the JNK2 isozymes. The mutant mice were healthy and fertile but defective in peripheral T-cell activation induced by antibody to the CD3 component of the T-cell receptor (TCR) complex - proliferation and production of interleukin-2 (IL-2), IL-4 and interferon-gamma (IFN-gamma) were reduced. The proliferation defect was restored by exogenous IL-2. B-cell activation was normal in the absence of JNK2. Activation-induced peripheral T-cell apoptosis was comparable between mutant and wild-type mice, but immature (CD4(+) CD8(+)) thymocytes lacking JNK2 were resistant to apoptosis induced by administration of anti-CD3 antibody in vivo. The lack of JNK2 also resulted in partial resistance of thymocytes to anti-CD3 antibody in vitro, but had little or no effect on apoptosis induced by anti-Fas antibody, dexamethasone or ultraviolet-C (UVC) radiation. CONCLUSIONS: JNK2 is essential for efficient activation of peripheral T cells but not B cells. Peripheral T-cell activation is probably required indirectly for induction of thymocyte apoptosis resulting from administration of anti-CD3 antibody in vivo. JNK2 functions in a cell-type-specific and stimulus-dependent manner, being required for apoptosis of immature thymocytes induced by anti-CD3 antibody but not for apoptosis induced by anti-Fas antibody, UVC or dexamethasone. JNK2 is not required for activation-induced cell death of mature T cells.  (+info)

(3/16369) The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells.

We have previously found that epidermal growth factor (EGF) mediates growth through the Jun N-terminal kinase/stress-activated kinase (JNK/SAPK) pathway in A549 human lung carcinoma cells. As observed here, EGF treatment also greatly enhances the tumorigenicity of A549 cells, suggesting an important role for JNK in cancer cell growth (F. Bost, R. McKay, N. Dean, and D. Mercola, J. Biol. Chem. 272:33422-33429, 1997). Several isoforms families of JNK, JNK1, JNK2, and JNK3, have been isolated; they arise from alternative splicing of three different genes and have distinct substrate binding properties. Here we have used specific phosphorothioate oligonucleotides targeted against the two major isoforms, JNK1 and JNK2, to discriminate their roles in EGF-induced transformation. Multiple antisense sequences have been screened, and two high-affinity and specific candidates have been identified. Antisense JNK1 eliminated steady-state mRNA and JNK1 protein expression with a 50% effective concentration (EC50) of <0.1 microM but did not alter JNK2 mRNA or protein levels. Conversely, antisense JNK2 specifically eliminated JNK2 steady-state mRNA and protein expression with an EC50 of 0.1 microM. Antisense JNK1 and antisense JNK2 inhibited by 40 and 70%, respectively, EGF-induced total JNK activity, whereas sense and scrambled-sequence control oligonucleotides had no effect. The elimination of mRNA, protein, and JNK activities lasted 48 and 72 h following a single Lipofectin treatment with antisense JNK1 and JNK2, respectively, indicating sufficient duration for examining the impact of specific elimination on the phenotype. Direct proliferation assays demonstrated that antisense JNK2 inhibited EGF-induced doubling of growth as well as the combination of active antisense oligonucleotides did. EGF treatment also induced colony formation in soft agar. This effect was completely inhibited by antisense JNK2 and combined-antisense treatment but not altered by antisense JNK1 alone. These results show that EGF doubles the proliferation (growth in soft agar as well as tumorigenicity in athymic mice) of A549 lung carcinoma cells and that the JNK2 isoform but not JNK1 is utilized for mediating the effects of EGF. This study represents the first demonstration of a cellular phenotype regulated by a JNK isoform family, JNK2.  (+info)

(4/16369) A novel genetic screen for snRNP assembly factors in yeast identifies a conserved protein, Sad1p, also required for pre-mRNA splicing.

The assembly pathway of spliceosomal snRNPs in yeast is poorly understood. We devised a screen to identify mutations blocking the assembly of newly synthesized U4 snRNA into a functional snRNP. Fifteen mutant strains failing either to accumulate the newly synthesized U4 snRNA or to assemble a U4/U6 particle were identified and categorized into 13 complementation groups. Thirteen previously identified splicing-defective prp mutants were also assayed for U4 snRNP assembly defects. Mutations in the U4/U6 snRNP components Prp3p, Prp4p, and Prp24p led to disassembly of the U4/U6 snRNP particle and degradation of the U6 snRNA, while prp17-1 and prp19-1 strains accumulated free U4 and U6 snRNA. A detailed analysis of a newly identified mutant, the sad1-1 mutant, is presented. In addition to having the snRNP assembly defect, the sad1-1 mutant is severely impaired in splicing at the restrictive temperature: the RP29 pre-mRNA strongly accumulates and splicing-dependent production of beta-galactosidase from reporter constructs is abolished, while extracts prepared from sad1-1 strains fail to splice pre-mRNA substrates in vitro. The sad1-1 mutant is the only splicing-defective mutant analyzed whose mutation preferentially affects assembly of newly synthesized U4 snRNA into the U4/U6 particle. SAD1 encodes a novel protein of 52 kDa which is essential for cell viability. Sad1p localizes to the nucleus and is not stably associated with any of the U snRNAs. Sad1p contains a putative zinc finger and is phylogenetically highly conserved, with homologues identified in human, Caenorhabditis elegans, Arabidospis, and Drosophila.  (+info)

(5/16369) Jun kinase phosphorylates and regulates the DNA binding activity of an octamer binding protein, T-cell factor beta1.

POU domain proteins have been implicated as key regulators during development and lymphocyte activation. The POU domain protein T-cell factor beta1 (TCFbeta1), which binds octamer and octamer-related sequences, is a potent transactivator. In this study, we showed that TCFbeta1 is phosphorylated following activation via the T-cell receptor or by stress-induced signals. Phosphorylation of TCFbeta1 occurred predominantly at serine and threonine residues. Signals which upregulate Jun kinase (JNK)/stress-activated protein kinase activity also lead to association of JNK with TCFbeta1. JNK associates with the activation domain of TCFbeta1 and phosphorylates its DNA binding domain. The phosphorylation of recombinant TCFbeta1 by recombinant JNK enhances the ability of TCFbeta1 to bind to a consensus octamer motif. Consistent with this conclusion, TCFbeta1 upregulates reporter gene transcription in an activation- and JNK-dependent manner. In addition, inhibition of JNK activity by catalytically inactive MEKK (in which methionine was substituted for the lysine at position 432) also inhibits the ability of TCFbeta1 to drive inducible transcription from the interleukin-2 promoter. These results suggest that stress-induced signals and T-cell activation induce JNK, which then acts on multiple cis sequences by modulating distinct transactivators like c-Jun and TCFbeta1. This demonstrates a coupling between the JNK activation pathway and POU domain proteins and implicates TCFbeta1 as a physiological target in the JNK signal transduction pathway leading to coordinated biological responses.  (+info)

(6/16369) Functions of cyclin A1 in the cell cycle and its interactions with transcription factor E2F-1 and the Rb family of proteins.

Human cyclin A1, a newly discovered cyclin, is expressed in testis and is thought to function in the meiotic cell cycle. Here, we show that the expression of human cyclin A1 and cyclin A1-associated kinase activities was regulated during the mitotic cell cycle. In the osteosarcoma cell line MG63, cyclin A1 mRNA and protein were present at very low levels in cells at the G0 phase. They increased during the progression of the cell cycle and reached the highest levels in the S and G2/M phases. Furthermore, the cyclin A1-associated histone H1 kinase activity peaked at the G2/M phase. We report that cyclin A1 could bind to important cell cycle regulators: the Rb family of proteins, the transcription factor E2F-1, and the p21 family of proteins. The in vitro interaction of cyclin A1 with E2F-1 was greatly enhanced when cyclin A1 was complexed with CDK2. Associations of cyclin A1 with Rb and E2F-1 were observed in vivo in several cell lines. When cyclin A1 was coexpressed with CDK2 in sf9 insect cells, the CDK2-cyclin A1 complex had kinase activities for histone H1, E2F-1, and the Rb family of proteins. Our results suggest that the Rb family of proteins and E2F-1 may be important targets for phosphorylation by the cyclin A1-associated kinase. Cyclin A1 may function in the mitotic cell cycle in certain cells.  (+info)

(7/16369) The bystander effect in the HSVtk/ganciclovir system and its relationship to gap junctional communication.

The bystander effect (BSE) is an interesting and important property of the herpes thymidine kinase/ganciclovir (hTK/GCV) system of gene therapy for cancer. With the BSE, not only are the hTK expressing cells killed upon ganciclovir (GCV) exposure but also neighboring wild-type tumor cells. On testing a large number of tumor cell lines in vitro, a wide range of sensitivity to bystander killing was found. Since transfer of toxic GCV metabolites from hTK-modified to wild-type tumor cells via gap junctions (GJ) seemed to be a likely mechanism of the BSE, we tested GJ function in these various tumors with a dye transfer technique and pharmacological agents known to affect GJ communication. We confirmed that mixtures of tumor cell resistant to the BSE did not show dye transfer from cell to cell while bystander-sensitive tumor cells did. Dieldrin, a drug known to decrease GJ communication, diminished dye transfer and also inhibited the BSE. Forskolin, an upregulator of cAMP did increase GJ, but directly inhibited hTK and therefore its effect on BSE could not be determined. We conclude that these observations further support port the concept that functional GJ play an important role in the BSE and further suggest that pharmacological manipulation of GJ may influence the outcome of cancer therapy with hTK/GCV.  (+info)

(8/16369) Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins.

The PML protein is associated to nuclear bodies (NBs) whose functions are as yet unknown. PML and two other NBs-associated proteins, Sp100 And ISG20 are directly induced by interferons (IFN). PML and Sp100 proteins are covalently linked to SUMO-1, and ubiquitin-like peptide. PML NBs are disorganized in acute promyelocytic leukemia and during several DNA virus infections. In particular, the HSV-1 ICP0 protein is known to delocalize PML from NBs. Thus, NBs could play an important role in oncogenesis, IFN response and viral infections. Here, we show that HSV-1 induced PML protein degradation without altering its mRNA level. This degradation was time- and multiplicity of infection-dependent. Sp100 protein was also degraded, while another SUMO-1 conjugated protein, RanGAP1 and the IFN-induced protein kinase PKR were not. The proteasome inhibitor MG132 abrogated the HSV-1-induced PML and Sp100 degradation and partially restored their NB-localization. HSV-1 induced PML and Sp100 degradation constitutes a new example of viral inactivation of IFN target gene products.  (+info)