Loading...
(1/52898) Endocytosis: EH domains lend a hand.

A number of proteins that have been implicated in endocytosis feature a conserved protein-interaction module known as an EH domain. The three-dimensional structure of an EH domain has recently been solved, and is likely to presage significant advances in understanding molecular mechanisms of endocytosis.  (+info)

(2/52898) Membrane fusion: structure snared at last.

The structure of the core of the neuronal 'SNARE complex', involved in neurotransmitter release, has been determined recently. Its topological similarity to viral fusion proteins suggests how the SNARE complex might facilitate membrane fusion.  (+info)

(3/52898) Four dimers of lambda repressor bound to two suitably spaced pairs of lambda operators form octamers and DNA loops over large distances.

Transcription factors that are bound specifically to DNA often interact with each other over thousands of base pairs [1] [2]. Large DNA loops resulting from such interactions have been observed in Escherichia coli with the transcription factors deoR [3] and NtrC [4], but such interactions are not, as yet, well understood. We propose that unique protein complexes, that are not present in solution, may form specifically on DNA. Their uniqueness would make it possible for them to interact tightly and specifically with each other. We used the repressor and operators of coliphage lambda to construct a model system in which to test our proposition. lambda repressor is a dimer at physiological concentrations, but forms tetramers and octamers at a hundredfold higher concentration. We predict that two lambda repressor dimers form a tetramer in vitro when bound to two lambda operators spaced 24 bp apart and that two such tetramers interact to form an octamer. We examined, in vitro, relaxed circular plasmid DNA in which such operator pairs were separated by 2,850 bp and 2,470 bp. Of these molecules, 29% formed loops as seen by electron microscopy (EM). The loop increased the tightness of binding of lambda repressor to lambda operator. Consequently, repression of the lambda PR promoter in vivo was increased fourfold by the presence of a second pair of lambda operators, separated by a distance of 3,600 bp.  (+info)

(4/52898) Probing interactions between HIV-1 reverse transcriptase and its DNA substrate with backbone-modified nucleotides.

BACKGROUND: To gain a molecular understanding of a biochemical process, the crystal structure of enzymes that catalyze the reactions involved is extremely helpful. Often the question arises whether conformations obtained in this way appropriately reflect the reactivity of enzymes, however. Rates that characterize transitions are therefore compulsory experiments for the elucidation of the reaction mechanism. Such experiments have been performed for the reverse transcriptase of the type 1 human immunodeficiency virus (HIV-1 RT). RESULTS: We have developed a methodology to monitor the interplay between HIV-1 RT and its DNA substrate. To probe the protein-DNA interactions, the sugar backbone of one nucleotide was modified by a substituent that influenced the efficiency of the chain elongation in a characteristic way. We found that strand elongation after incorporation of the modified nucleotide follows a discontinuous efficiency for the first four nucleotides. The reaction efficiencies could be correlated with the distance between the sugar substituent and the enzyme. The model was confirmed by kinetic experiments with HIV-1 RT mutants. CONCLUSIONS: Experiments with HIV-1 RT demonstrate that strand-elongation efficiency using a modified nucleotide correlates well with distances between the DNA substrate and the enzyme. The functional group at the modified nucleotides acts as an 'antenna' for steric interactions that changes the optimal transition state. Kinetic experiments in combination with backbone-modified nucleotides can therefore be used to gain structural information about reverse transcriptases and DNA polymerases.  (+info)

(5/52898) A hyperstable collagen mimic.

BACKGROUND: Collagen is the most abundant protein in animals. Each polypeptide chain of collagen is composed of repeats of the sequence: Gly-X-Y, where X and Y are often L-proline (Pro) and 4(R)-hydroxy-L-proline (Hyp) residues, respectively. These chains are wound into tight triple helices of great stability. The hydroxyl group of Hyp residues contributes much to this conformational stability. The existing paradigm is that this stability arises from interstrand hydrogen bonds mediated by bridging water molecules. This model was tested using chemical synthesis to replace Hyp residues with 4(R)-fluoro-L-proline (Flp) residues. The fluorine atom in Flp residues does not form hydrogen bonds but does elicit strong inductive effects. RESULTS: Replacing the Hyp residues in collagen with Flp residues greatly increases triple-helical stability. The free energy contributed by the fluorine atom in Flp residues is twice that of the hydroxyl group in Hyp residues. The stability of the Flp-containing triple helix far exceeds that of any untemplated collagen mimic of similar size. CONCLUSIONS: Bridging water molecules contribute little to collagen stability. Rather, collagen stability relies on previously unappreciated inductive effects. Collagen mimics containing fluorine or other appropriate electron-withdrawing substituents could be the basis of new biomaterials for restorative therapies.  (+info)

(6/52898) How do peptide synthetases generate structural diversity?

Many low-molecular-weight peptides of microbial origin are synthesized nonribosomally on large multifunctional proteins, termed peptide synthetases. These enzymes contain repeated building blocks in which several defined domains catalyze specific reactions of peptide synthesis. The order of these domains within the enzyme determines the sequence and structure of the peptide product.  (+info)

(7/52898) Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S.

The lysosomal cysteine proteases cathepsins S and L play crucial roles in the degradation of the invariant chain during maturation of MHC class II molecules and antigen processing. The p41 form of the invariant chain includes a fragment which specifically inhibits cathepsin L but not S. The crystal structure of the p41 fragment, a homologue of the thyroglobulin type-1 domains, has been determined at 2.0 A resolution in complex with cathepsin L. The structure of the p41 fragment demonstrates a novel fold, consisting of two subdomains, each stabilized by disulfide bridges. The first subdomain is an alpha-helix-beta-strand arrangement, whereas the second subdomain has a predominantly beta-strand arrangement. The wedge shape and three-loop arrangement of the p41 fragment bound to the active site cleft of cathepsin L are reminiscent of the inhibitory edge of cystatins, thus demonstrating the first example of convergent evolution observed in cysteine protease inhibitors. However, the different fold of the p41 fragment results in additional contacts with the top of the R-domain of the enzymes, which defines the specificity-determining S2 and S1' substrate-binding sites. This enables inhibitors based on the thyroglobulin type-1 domain fold, in contrast to the rather non-selective cystatins, to exhibit specificity for their target enzymes.  (+info)

(8/52898) Structural basis of profactor D activation: from a highly flexible zymogen to a novel self-inhibited serine protease, complement factor D.

The crystal structure of profactor D, determined at 2.1 A resolution with an Rfree and an R-factor of 25.1 and 20.4%, respectively, displays highly flexible or disordered conformation for five regions: N-22, 71-76, 143-152, 187-193 and 215-223. A comparison with the structure of its mature serine protease, complement factor D, revealed major conformational changes in the similar regions. Comparisons with the zymogen-active enzyme pairs of chymotrypsinogen, trypsinogen and prethrombin-2 showed a similar distribution of the flexible regions. However, profactor D is the most flexible of the four, and its mature enzyme displays inactive, self-inhibited active site conformation. Examination of the surface properties of the N-terminus-binding pocket indicates that Ile16 may play the initial positioning role for the N-terminus, and Leu17 probably also helps in inducing the required conformational changes. This process, perhaps shared by most chymotrypsinogen-like zymogens, is followed by a factor D-unique step, the re-orientation of an external Arg218 to an internal position for salt-bridging with Asp189, leading to the generation of the self-inhibited factor D.  (+info)