Improving proteolytic cleavage at the 3A/3B site of the hepatitis A virus polyprotein impairs processing and particle formation, and the impairment can be complemented in trans by 3AB and 3ABC. (1/193)

The orchestrated liberation of viral proteins by 3C(pro)-mediated proteolysis is pivotal for gene expression by picornaviruses. Proteolytic processing is regulated either by the amino acid sequence at the cleavage site of the substrate or by cofactors covalently or noncovalently linked to the viral proteinase. To determine the role of the amino acid sequence at cleavage sites 3A/3B and 3B/3C that are essential for the liberation of 3C(pro) from its precursors and to assess the function of the stable processing intermediates 3AB and 3ABC, we studied the effect of cleavage site mutations on hepatitis A virus (HAV) polyprotein processing, particle formation, and replication. Using the recombinant vaccinia virus system, we showed that the normally retarded cleavage at the 3A/3B junction can be improved by altering the amino acid sequence at the scissile bond such that it matches the preferred HAV 3C cleavage sites. In contrast to the processing products of the wild-type polyprotein, 3ABC was no longer detectable in the mutant. VP0 and VP3 were generated less efficiently, implying that processing of the structural protein precursor P1-2A depends on the presence of stable 3ABC and/or 3AB. In addition, cleavage of 2BC was impaired in 3AB/3ABC-deficient mutants. Formation of HAV particles was not affected in mutants with blocked 3A/3B and/or 3B/3C cleavage sites. However, 3ABC-deficient mutants produced small numbers of HAV particles, which could be augmented by coexpressing 3AB or 3ABC. The hydrophobic domain of 3A that has been proposed to mediate membrane anchorage of the replication complex was crucial for restoration of defective particle formation. In vitro transcripts of the various cleavage site mutants were unable to initiate an infectious cycle, and no progeny viruses were obtained even after blind passages. Taken together, the data suggest that accumulation of uncleaved HAV 3AB and/or 3ABC is pivotal for both viral replication and efficient particle formation.  (+info)

Hyperphosphorylation of the hepatitis C virus NS5A protein requires an active NS3 protease, NS4A, NS4B, and NS5A encoded on the same polyprotein. (2/193)

The nonstructural protein NS5A of hepatitis c virus (HCV) has been demonstrated to be a phosphoprotein with an apparent molecular mass of 56 kDa. In the presence of other viral proteins, p56 is converted into a slower-migrating form of NS5A (p58) by additional phosphorylation events. In this report, we show that the presence of NS3, NS4A, and NS4B together with NS5A is necessary and sufficient for the generation of the hyperphosphorylated form of NS5A (p58) and that all proteins must be encoded on the same polyprotein (in cis). Kinetic studies of NS5A synthesis and pulse-chase experiments demonstrate that fully processed NS5A is the substrate for the formation of p58 and that p56 is converted to p58. To investigate the role of NS3 in NS5A hyperphosphorylation, point and deletion mutations were introduced into NS3 in the context of a polyprotein containing the proteins from NS3 to NS5A. Mutation of the catalytic serine residue into alanine abolished protease activity of NS3 and resulted in total inhibition of NS5A hyperphosphorylation, even if polyprotein processing was allowed by addition of NS3 and NS4A in trans. The same result was obtained by deletion of the first 10 or 28 N-terminal amino acids of NS3, which are known to be important for the formation of a stable complex between NS3 and its cofactor NS4A. These data suggest that the formation of p58 is closely connected to HCV polyprotein processing events. Additional data obtained with NS3 containing the 34 C-terminal residues of NS2 provide evidence that in addition to NS3 protease activity the authentic N-terminal sequence is required for NS5A hyperphosphorylation.  (+info)

Bovine leukemia virus Gag particle assembly in insect cells: formation of chimeric particles by domain-switched leukemia/lentivirus Gag polyprotein. (3/193)

A key stage in the life cycle of C-type retroviruses is the assembly of Gag precursor protein at the plasma membrane of infected cells. Here we report the assembly of bovine leukemia virus (BLV) gag gene product into virus-like particles (VLPs) using the baculovirus expression system. Expression of BLV Pr44(Gag) resulted in the assembly and release of VLPs, thereby confirming the ability of retroviral Gag polyprotein to assemble and bud from insect cells. Efficient particle formation required a myristoylation signal at the N-terminus of BLV Pr44(Gag). Recombinant baculoviruses expressing matrix (MA) or capsid-nucleocapsid (CA-NC) proteins of BLV were generated but neither of these domains was capable of assembling into particulate structures. To assess the compatibility of Gag domains between leukemia and lentivirus groups three different recombinant chimeras each expressing MA of one virus (e.g., simian immunodeficiency or BLV) and CA-NC of another (e.g., BLV or human T-cell leukemia virus type-I) were constructed. Each of the chimeric proteins assembled efficiently and budded as VLPs, suggesting that the MA and CA domains of these two evolutionary divergent retrovirus groups can be functionally exchanged without perturbation of Gag VLP formation. The lenti-leukemia chimeric Gag approach has potential for studying protein-protein interactions in other retroviruses.  (+info)

Crystal structure of an inhibitor complex of the 3C proteinase from hepatitis A virus (HAV) and implications for the polyprotein processing in HAV. (4/193)

The proteolytic processing of the viral polyprotein is an essential step during the life cycle of hepatitis A virus (HAV), as it is in all positive-sense, single-stranded RNA viruses of animals. In HAV the 3C proteinase is the only proteolytic activity involved in the polyprotein processing. The specific recognition of the cleavage sites by the 3C proteinase depends on the amino acid sequence of the cleavage site. The structure of the complex of the HAV 3C proteinase and a dipeptide inhibitor has been determined by X-ray crystallography. The double-mutant of HAV 3C (C24S, F82A) was inhibited with the specific inhibitor iodoacetyl-valyl-phenylalanyl-amide. The resulting complex had an acetyl-Val-Phe-amide group covalently attached to the S(gamma) atom of the nucleophilic Cys 172 of the enzyme. Crystals of the complex of HAV 3C (C24S, F82A) acetyl-Val-Phe-amide were found to be monoclinic, space group P2(1), having 4 molecules in the asymmetric unit and diffracting to 1.9-A resolution. The final refined structure consists of 4 molecules of HAV 3C (C24S,F82A) acetyl-Val-Phe-amide, 1 molecule of DMSO, 1 molecule of glycerol, and 514 water molecules. There are considerable conformational differences among the four molecules in the asymmetric unit. The final R-factor is 20.4% for all observed reflections between 15.0- and 1.9-A resolution and the corresponding R(free) is 29.8%. The dipeptide inhibitor is bound to the S(1)(') and S(2)(') specificity subsites of the proteinase. The crystal structure reveals that the HAV 3C proteinase possesses a well-defined S(2)(') specificity pocket and suggests that the P(2)(') residue could be an important determinant for the selection of the primary cleavage site during the polyprotein processing in HAV.  (+info)

Mutational analysis of the GB virus B internal ribosome entry site. (5/193)

GB virus B (GBV-B) is a recently discovered hepatotropic flavivirus that is distantly related to hepatitis C virus (HCV). We show here that translation of its polyprotein is initiated by internal entry of ribosomes on GBV-B RNA. We analyzed the translational activity of dicistronic RNA transcripts containing wild-type or mutated 5' nontranslated GBV-B RNA (5'NTR) segments, placed between the coding sequences of two reporter proteins, in vitro in rabbit reticulocyte lysate and in vivo in transfected BT7-H cells. We related these results to a previously proposed model of the secondary structure of the GBV-B 5'NTR (M. Honda, et al. RNA 2:955-968, 1996). We identified an internal ribosome entry site (IRES) bounded at its 5' end by structural domain II, a location analogous to the 5' limit of the IRES in both the HCV and pestivirus 5'NTRs. Mutational analysis confirmed the structure proposed for domain II of GBV-B RNA, and demonstrated that optimal IRES-mediated translation is dependent on each of the putative RNA hairpins in this domain, including two stem-loops not present in the HCV or pestivirus structures. IRES activity was also absolutely dependent on (i) phylogenetically conserved, adenosine-containing bulge loops in domain III and (ii) the primary nucleotide sequence of stem-loop IIIe. IRES-directed translation was inhibited by a series of point mutations predicted to stabilize stem-loop IV, which contains the initiator AUG codon in its loop segment. A reporter gene was translated most efficiently when fused directly to the initiator AUG codon, with no intervening downstream GBV-B sequence. This finding indicates that the 3' limit of the GBV-B IRES is at the initiator AUG and that it does not require downstream polyprotein-coding sequence as suggested for the HCV IRES. These results show that the GBV-B IRES, while sharing a common general structure, differs both structurally and functionally from other flavivirus IRES elements.  (+info)

Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products. (6/193)

The coronavirus Avian infectious bronchitis virus (IBV) employs polyprotein processing as a strategy to express its gene products. Previously we identified the first cleavage event as proteolysis at the Gly(673)-Gly(674) dipeptide bond mediated by the first papain-like proteinase domain (PLPD-1) to release an 87-kDa mature protein. In this report, we demonstrate a novel cleavage activity of PLPD-1. Expression, deletion, and mutagenesis studies showed that the product encoded between nucleotides 2548 and 8865 was further cleaved by PLPD-1 at the Gly(2265)-Gly(2266) dipeptide bond to release an N-terminal 195-kDa and a C-terminal 41-kDa cleavage product. Characterization of the cleavage activity revealed that the proteinase is active on this scissile bond when expressed in vitro in rabbit reticulocyte lysates and can act on the same substrate in trans when expressed in intact cells. Both the N- and C-terminal cleavage products were detected in virus-infected cells and were found to be physically associated. Glycosidase digestion and site-directed mutagenesis studies of the 41-kDa protein demonstrated that it is modified by N-linked glycosylation at the Asn(2313) residue encoded by nucleotides 7465 to 7467. By using a region-specific antiserum raised against the IBV sequence encoded by nucleotides 8865 to 9786, we also demonstrated that a 33-kDa protein, representing the 3C-like proteinase (3CLP), was specifically immunoprecipitated from the virus-infected cells. Site-directed mutagenesis and expression studies showed that a previously predicted cleavage site (Q(2583)-G(2584)) located within the 41-kDa protein-encoding region was not utilized by 3CLP, supporting the conclusion that the 41-kDa protein is a mature viral product.  (+info)

Multiple interactions among proteins encoded by the mite-transmitted wheat streak mosaic tritimovirus. (7/193)

The genome organization of the mite-transmitted wheat streak mosaic virus (WSMV) appears to parallel that of members of the Potyviridae with monopartite genomes, but there are substantial amino acid dissimilarities with other potyviral polyproteins. To initiate studies on the functions of WSMV-encoded proteins, a protein interaction map was generated using a yeast two-hybrid system. Because the pathway of proteolytic maturation of the WSMV polyprotein has not been experimentally determined, random libraries of WSMV cDNA were made both in DNA-binding domain and activation domain plasmid vectors and introduced into yeast. Sequence analysis of multiple interacting pairs revealed that interactions largely occurred between domains within two groups of proteins. The first involved interactions among nuclear inclusion protein a, nuclear inclusion protein b, and coat protein (CP), and the second involved helper component-proteinase (HC-Pro) and cylindrical inclusion protein (CI). Further immunoblot and deletion mapping analyses of the interactions suggest that subdomains of CI, HC-Pro, and P1 interact with one another. The two-hybrid assay was then performed using full-length genes of CI, HC-Pro, P1, P3, and CP, but no heterologous interactions were detected. In vitro binding assay using glutathione-S-transferase fusion proteins and in vitro translation products, however, revealed mutual interactions among CI, HC-Pro, P1, and P3. The failure to detect interactions between full-length proteins by the two-hybrid assay might be due to adverse effects of expression of viral proteins in yeast cells. The capacity to participate in multiple homomeric and heteromeric molecular interactions is consistent with the pleiotropic nature of many potyviral gene mutants and suggests mechanisms for regulation of various viral processes via a network of viral protein complexes.  (+info)

Virus-specific cofactor requirement and chimeric hepatitis C virus/GB virus B nonstructural protein 3. (8/193)

GB virus B (GBV-B) is closely related to hepatitis C virus (HCV) and causes acute hepatitis in tamarins (Saguinus species), making it an attractive surrogate virus for in vivo testing of anti-HCV inhibitors in a small monkey model. It has been reported that the nonstructural protein 3 (NS3) serine protease of GBV-B shares similar substrate specificity with its counterpart in HCV. Authentic proteolytic processing of the HCV polyprotein junctions (NS4A/4B, NS4B/5A, and NS5A/5B) can be accomplished by the GBV-B NS3 protease in an HCV NS4A cofactor-independent fashion. We further characterized the protease activity of a full-length GBV-B NS3 protein and its cofactor requirement using in vitro-translated GBV-B substrates. Cleavages at the NS4A/4B and NS5A/5B junctions were readily detectable only in the presence of a cofactor peptide derived from the central region of GBV-B NS4A. Interestingly, the GBV-B substrates could also be cleaved by the HCV NS3 protease in an HCV NS4A cofactor-dependent manner, supporting the notion that HCV and GBV-B share similar NS3 protease specificity while retaining a virus-specific cofactor requirement. This finding of a strict virus-specific cofactor requirement is consistent with the lack of sequence homology in the NS4A cofactor regions of HCV and GBV-B. The minimum cofactor region that supported GBV-B protease activity was mapped to a central region of GBV-B NS4A (between amino acids Phe22 and Val36) which overlapped with the cofactor region of HCV. Alanine substitution analysis demonstrated that two amino acids, Val27 and Trp31, were essential for the cofactor activity, a finding reminiscent of the two critical residues in the HCV NS4A cofactor, Ile25 and Ile29. A model for the GBV-B NS3 protease domain and NS4A cofactor complex revealed that GBV-B might have developed a similar structural strategy in the activation and regulation of its NS3 protease activity. Finally, a chimeric HCV/GBV-B bifunctional NS3, consisting of an N-terminal HCV protease domain and a C-terminal GBV-B RNA helicase domain, was engineered. Both enzymatic activities were retained by the chimeric protein, which could lead to the development of a chimeric GBV-B virus that depends on HCV protease function.  (+info)