Standardized nomenclature for inbred strains of mice: sixth listing. (1/24239)

Rules for designating inbred strains of mice are presented, along with a list of strains with their origins and characteristics, a table of biochemical polymorphisms, and standard subline designations.  (+info)

Hidden genetic variability within electromorphs in finite populations. (2/24239)

The amount of hidden genetic variability within electromorphs in finite populations is studied by using the infinite site model and stepwise mutation model simultaneously. A formula is developed for the bivariate probability generating function for the number of codon differences and the number of electromorph state differences between two randomly chosen cistrons. Using this formula, the distribution as well as the mean and variance of the number of codon differences between two identical or nonidentical electromorphs are studied. The distribution of the number of codon differences between two randomly chosen identical electromorphs is similar to the geometric distribution but more leptokurtic. Studies are also made on the number of codon differences between two electromorphs chosen at random one from each of two populations which have been separated for an arbitrary number of generations. It is shown that the amount of hidden genetic variability is very large if the product of effective population size and mutation rate is large.  (+info)

Lack of genic similarity between two sibling species of drosophila as revealed by varied techniques. (3/24239)

Acrylamide gel electrophoresis was performed on the enzyme xanthine dehydrogenase in sixty isochromosomal lines of Drosophila persimilis from three geographic populations. Sequential electrophoretic analysis using varied gel concentrations and buffers revealed twenty-three alleles in this species where only five had been described previously. These new electrophoretic techniques also detected a profound increase in divergence of gene frequencies at this locus between D. persimilis and its sibling species D. pseudoobscura. The implications of these results for questions of speciation and the maintenance of genetic variability are discussed.  (+info)

Genetic heterogeneity within electrophoretic "alleles" of xanthine dehydrogenase in Drosophila pseudoobscura. (4/24239)

An experimental plan for an exhaustive determination of genic variation at structural gene loci is presented. In the initial steps of this program, 146 isochromosomal lines from 12 geographic populations of D. pseudoobscura were examined for allelic variation of xanthine dehydrogenase by the serial use of 4 different electrophoretic conditions and a head stability test. The 5 criteria revealed a total of 37 allelic classes out of the 146 genomes examined where only 6 had been previously revealed by the usual method of gel electrophoresis. This immense increase in genic variation also showed previously unsuspected population differences between the main part of the species distribution and the isolated population of Bogota population. The average heterozygosity at the Xdh locus is at least 72% in natural populations. This result, together with the very large number of alleles segregating and the pattern of allelic frequencies, has implications for theories of genetic polymorphism which are discussed.  (+info)

Polymorphism in a cyclic parthenogenetic species: Simocephalus serrulatus. (5/24239)

A survey of sixteen isozyme loci using electrophoretic techniques was conducted for three isolated natural populations and one laboratory population of the cyclic parthenogenetic species, Simocephalus serrulatus. The proportion of polymorphic loci (33%-60%) and the average number of heterozygous loci per individual (6%-23%) in the three natural populations were found to be comparable to those found in most sexually reproducing organisms. Detailed analyses were made for one of these populations using five polymorphic loci. The results indicated that (1) seasonal changes in genotypic frequencies took place, (2) apomicitic parthenogenesis does not lead to genetic homogeneity, and (3) marked gametic disequilibrium at these five loci was present in the population, indicating that selection acted on coadapted groups of genes.  (+info)

Testing for selective neutrality of electrophoretically detectable protein polymorphisms. (6/24239)

The statistical assessment of gene-frequency data on protein polymorphisms in natural populations remains a contentious issue. Here we formulate a test of whether polymorphisms detected by electrophoresis are in accordance with the stepwise, or charge-state, model of mutation in finite populations in the absence of selection. First, estimates of the model parameters are derived by minimizing chi-square deviations of the observed frequencies of genotypes with alleles (0,1,2...) units apart from their theoretical expected values. Then the remaining deviation is tested under the null hypothesis of neutrality. The procedure was found to be conservative for false rejections in simulation data. We applied the test to Ayala and Tracey 's data on 27 allozymic loci in six populations of Drosophila willistoni . About one-quarter of polymorphic loci showed significant departure from the neutral theory predictions in virtually all populations. A further quarter showed significant departure in some populations. The remaining data showed an acceptable fit to the charge state model. A predominating mode of selection was selection against alleles associated with extreme electrophoretic mobilities. The advantageous properties and the difficulties of the procedure are discussed.  (+info)

Mining SNPs from EST databases. (7/24239)

There is considerable interest in the discovery and characterization of single nucleotide polymorphisms (SNPs) to enable the analysis of the potential relationships between human genotype and phenotype. Here we present a strategy that permits the rapid discovery of SNPs from publicly available expressed sequence tag (EST) databases. From a set of ESTs derived from 19 different cDNA libraries, we assembled 300,000 distinct sequences and identified 850 mismatches from contiguous EST data sets (candidate SNP sites), without de novo sequencing. Through a polymerase-mediated, single-base, primer extension technique, Genetic Bit Analysis (GBA), we confirmed the presence of a subset of these candidate SNP sites and have estimated the allele frequencies in three human populations with different ethnic origins. Altogether, our approach provides a basis for rapid and efficient regional and genome-wide SNP discovery using data assembled from sequences from different libraries of cDNAs.  (+info)

Adducin polymorphism affects renal proximal tubule reabsorption in hypertension. (8/24239)

Abnormalities in renal sodium reabsorption may be involved in the development and maintenance of experimental and clinical hypertension. Adducin polymorphism is thought to regulate ion transport in the renal tubule. It has recently been shown that there is a significant linkage of alpha-adducin locus to essential hypertension and that the 460Trp allele is associated with hypertension. Patients with this allele display larger blood pressure changes with body sodium variation. The aim of this study was to test whether alpha-adducin polymorphism is involved in abnormalities of renal function. Because proximal tubular reabsorption has been shown to be tightly coupled to renal perfusion pressure, this segmental tubular function was investigated in 54 (29 Gly/Gly and 25 Gly/Trp) untreated hypertensive patients in basal conditions with the use of endogenous lithium concentration and uric acid. Fractional excretions of lithium and uric acid were significantly decreased in the Gly/Trp hypertensive patients compared with the Gly/Gly hypertensives. The contribution of alpha-adducin to fractional excretion of lithium was investigated by multiple regression analysis. Adducin genotype was significantly (R2=0.11, F=6.5; P<0.01) and directly related to fraction excretion of lithium; gender, age, urinary Na+, urinary uric acid, mean blood pressure, and plasma renin activity were not related. In conclusion, the adducin gene can be considered to be a 'renal hypertensive gene' that modulates the capacity of tubular epithelial cells to transport Na+ and hence contributes to the level of blood pressure.  (+info)