Gene silencing: plants and viruses fight it out. (1/1131)

Plants can become 'immune' to attack by viruses by degrading specific viral RNA, but some plant viruses have evolved the general capacity to suppress this resistance mechanism.  (+info)

Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. (2/1131)

Pre-inoculation of plants with a pathogen that induces necrosis leads to the development of systemic acquired resistance (SAR) to subsequent pathogen attack [1]. The phenylpropanoid-derived compound salicylic acid (SA) is necessary for the full expression of both local resistance and SAR [2] [3]. A separate signaling pathway involving jasmonic acid (JA) is involved in systemic responses to wounding and insect herbivory [4] [5]. There is evidence both supporting and opposing the idea of cross-protection against microbial pathogens and insect herbivores [6] [7]. This is a controversial area because pharmacological experiments point to negative cross-talk between responses to systemic pathogens and responses to wounding [8] [9] [10], although this has not been demonstrated functionally in vivo. Here, we report that reducing phenylpropanoid biosynthesis by silencing the expression of phenylalanine ammonialyase (PAL) reduces SAR to tobacco mosaic virus (TMV), whereas overexpression of PAL enhances SAR. Tobacco plants with reduced SAR exhibited more effective grazing-induced systemic resistance to larvae of Heliothis virescens, but larval resistance was reduced in plants with elevated phenylpropanoid levels. Furthermore, genetic modification of components involved in phenylpropanoid synthesis revealed an inverse relationship between SA and JA levels. These results demonstrate phenylpropanoid-mediated cross-talk in vivo between microbially induced and herbivore-induced pathways of systemic resistance.  (+info)

Calcein as a fluorescent probe for ferric iron. Application to iron nutrition in plant cells. (3/1131)

The recent use of calcein (CA) as a fluorescent probe for cellular iron has been shown to reflect the nutritional status of iron in mammalian cells (Breuer, W., Epsztejn, S., and Cabantchik, Z. I. (1995) J. Biol. Chem. 270, 24209-24215). CA was claimed to be a chemosensor for iron(II), to measure the labile iron pool and the concentration of cellular free iron(II). We first study here the thermodynamic and kinetic properties of iron binding by CA. Chelation of a first iron(III) involves one aminodiacetic arm and a phenol. The overall stability constant log beta111 of FeIIICAH is 33. 9. The free metal ion concentration is pFeIII = 20.3. A (FeIII)2 CA complex can be formed. A reversible iron(III) exchange from FeIIICAH to citrate and nitrilotriacetic acid is evidenced when these ligands are present in large excess. The kinetics of iron(III) exchange by CA is compatible with metabolic studies. The low reduction potential of FeIIICAH shows that the ferric form is highly stabilized. CA fluorescence is quenched by 85% after FeIII chelation but by only 20% using FeII. Real time iron nutrition by Arabidopsis thaliana cells has been measured by fluorimetry, and the iron buffer FeIIICAH + CA was used as source of iron. As a siderophore, FeIIICAH promotes cell growth and regreening of iron-deficient cells more rapidly than FeIIIEDTA. We conclude that CA is a good chemosensor for iron(III) in cells and biological fluids, but not for Fe(II). We discuss the interest of quantifying iron buffers in biochemical studies of iron, in vitro as well as in cells.  (+info)

Phloem transport: Are you chaperoned? (4/1131)

Long-distance transport via the vasculature in plants is critical for nutrient dissemination, as well as transport of growth regulatory molecules such as hormones. Evidence is now accumulating that protein and RNA molecules also use this transport pathway, possibly to regulate developmental and physiological processes.  (+info)

Plant graviperception and gravitropism: a newcomer's view. (5/1131)

Gravitropism is an adaptable mechanism corresponding to the directed growth by which plants orient in response to the gravity vector. The overall process is generally divided into three distinct stages: graviperception, gravitransduction, and asymmetric growth response. The phenomenology of these different steps has been described by using refined cell biology approaches combined with formal and molecular genetics. To date, it clearly appears that the cellular organization plays crucial roles in gravisensing and that gravitropism is genetically different between organs. Moreover, while interfering with other physical or chemical stimuli and sharing probably some common intermediary steps in the transduction pathway, gravity has its own perception and transduction systems. The intimate mechanisms involved in these processes have to be unveiled at the molecular level and their biological relevance addressed at the cellular and whole plant levels under normal and microgravitational conditions. gravitropism: a newcomer's view.  (+info)

Statoliths motions in gravity-perceiving plant cells: does actomyosin counteract gravity? (6/1131)

Statocytes from plant root caps are characterized by a polar arrangement of cell organelles and sedimented statoliths. Cortical microtubules and actin microfilaments contribute to development and maintenance of this polarity, whereas the lack of endoplasmic microtubules and prominent bundles of actin microfilaments probably facilitates sedimentation of statoliths. High-resolution video microscopy shows permanent motion of statoliths even when sedimented. After immunofluorescence microscopy using antibodies against actin and myosin II the most prominent labeling was observed at and around sedimented statoliths. Experiments under microgravity have demonstrated that the positioning of statoliths depends on the external gravitational force and on internal forces, probably exerted by the actomyosin complex, and that transformation of the gravistimulus evidently occurs in close vicinity to the statoliths. These results suggest that graviperception occurs dynamically within the cytoplasm via small-distance sedimentation rather than statically at the lowermost site of sedimentation. It is hypothesized that root cap cells are comparing randomized motions with oriented motions of statoliths and thereby perceiving gravity.  (+info)

Mitochondrial gene organization and expression in petunia male fertile and sterile plants. (7/1131)

In cytoplasmic male-sterile Petunia lines, NADH dehydrogenase subunit 3 (nad3) and ribosomal protein S12 (rps12) are cotranscribed with the chimeric gene pcf and located in the region of the mitochondrial genome associated with cytoplasmic male sterility (CMS) in Petunia. In fertile Petunia line 3704, the genes for nad3 and rps12 are cotranscribed with an unidentified open reading frame (orf143). In the homologous region of fertile line 3699, there is an ORF that lacks a genomic DNA-encoded stop codon; instead an RNA editing event creates a stop codon, resulting in an ORF of 161 codons. While expressed sequences homologous to this open reading frame can be detected in sterile lines, a contiguous orf143/orf161 gene does not exist in the CMS-encoding mitochondrial genome. Transcription at the CMS-associated pcf locus and the fertile orf143/nad3/rps12 locus is complex, with multiple 5' and 3' termini. The presence of the nuclear fertility restorer gene affects the abundance of a transcript class with 5' termini--121 nucleotides before the pcf start codon, and greatly reduces the abundance of a pcf gene product with apparent molecular mass of 25 kDa which is present in both vegetative and reproductive tissues of CMS plants. In addition to the 25 kDa protein product, small amounts of precursor and processed pcf products with higher molecular mass have been detected; their possible role in the CMS phenotype is unknown. Current hypotheses for the mechanism of action of CMS-associated and fertility restorer genes are discussed.  (+info)

Ethylene plays multiple nonprimary roles in modulating the gravitropic response in tomato. (8/1131)

Ethylene is known to interact with auxin in regulating stem growth, and yet evidence for the role of ethylene in tropic responses is contradictory. Our analysis of four mutants of tomato (Lycopersicon esculentum) altered in their response to gravity, auxin, and/or ethylene revealed concentration-dependent modulation of shoot gravitropism by ethylene. Ethylene inhibitors reduce wild-type gravicurvature, and extremely low (0.0005-0.001 microliter L-1) ethylene concentrations can restore the reduced gravitropic response of the auxin-resistant dgt (diageotropica) mutant to wild-type levels. Slightly higher concentrations of ethylene inhibit the gravitropic response of all but the ethylene-insensitive nr (never-ripe) mutant. The gravitropic responses of nr and the constitutive-response mutant epi (epinastic) are slightly and significantly delayed, respectively, but otherwise normal. The reversal of shoot gravicurvature by red light in the lz-2 (lazy-2) mutant is not affected by ethylene. Taken together, these data indicate that, although ethylene does not play a primary role in the gravitropic response of tomato, low levels of ethylene are necessary for a full gravitropic response, and moderate levels of the hormone specifically inhibit gravicurvature in a manner different from ethylene inhibition of overall growth.  (+info)