Phenylethanolamine N-methyltransferase gene expression. Sp1 and MAZ potential for tissue-specific expression. (1/128)

Phenylethanolamine N-methyltransferase (PNMT) promoter-luciferase reporter gene constructs (pGL3RP863, pGL3RP444, and pGL3RP392) transfected into COS1, RS1, PC12, NIH/3T3, or Neuro2A cells showed the highest basal luciferase activity in the Neuro2A cells. DNase I footprinting with Neuro2A cell nuclear extract identified protected PNMT promoter regions spanning the -168/-165 and -48/-45 base pair Sp1/Egr-1 binding sites. Gel mobility shift assays and transient transfection assays using site-directed mutant PNMT promoter-luciferase reporter gene constructs indicated that the elevated basal luciferase activity in the Neuro2A cells was mediated by Sp-1. Furthermore, activation of the PNMT promoter by Sp1 depends on both its binding affinity for its cognate target sequences and its intracellular concentrations. When Sp1 levels were increased through an expression plasmid, luciferase reporter gene expression rose well beyond basal wild-type levels, even with either Sp1 binding element mutated. Finally, another transcription factor expressed in the Neuro2A cells competes with Sp1 by interacting with DNA sequences 3' to the -48 base pair Sp1 site to prevent Sp1 binding and induction of the PNMT promoter. The DNA consensus sequence, Southwestern analysis, and gel mobility shift assays with antibodies identify MAZ as the competitive factor. These findings suggest that Sp1 may potentially contribute to the tissue-specific expression of the PNMT gene, with the competition between Sp1 and MAZ conferring additional tissue-specific control.  (+info)

Properties of C1 and other ventrolateral medullary neurones with hypothalamic projections in the rat. (2/128)

1. This study compared (i) the properties of C1 cells with those of neighbouring non-C1 neurones that project to the hypothalamus and (ii) the properties of C1 cells that project to the hypothalamus with those of their medullospinal counterparts. 2. Extracellular recordings were made at three rostrocaudal levels of the ventrolateral medulla (VLM) in alpha-chloralose-anaesthetized, artificially ventilated, paralysed rats. Recorded cells were filled with biotinamide. 3. Level I (0-300 microm behind facial nucleus) contained spontaneously active neurones that were silenced by baro- and cardiopulmonary receptor activation and virtually unaffected by nociceptive stimulation (firing rate altered by < 20 %). These projected either to the cord (type I; 36/39), or to the hypothalamus (type II; 2/39) but rarely to both (1/39). 4. Level II (600-800 microm behind facial nucleus) contained (i) type I neurones (n = 3) (ii) type II neurones (n = 11), (iii) neurones that projected to the hypothalamus and were silenced by baro- and cardiopulmonary receptor activation but activated by strong nociceptive stimulation (type III, n = 2), (iv) non-barosensitive cells activated by weak nociceptive stimulation which projected only to the hypothalamus (type IV, n = 9), (v) cells that projected to the hypothalamus and responded to none of the applied stimuli (type V, n = 7) and (vi) neurones activated by elevating blood pressure which projected neither to the cord nor to the hypothalamus (type VI, n = 4). 5. Level III (1400-1600 microm behind facial motor nucleus) contained all the cell types found at level II except type I. 6. Most of type I and II (17/26) and half of type III cells (4/8) were C1 neurones. Type IV-V were rarely adrenergic (2/12) and type VI were never adrenergic (0/3). 7. All VLM baroinhibited cells project either to the cord or the hypothalamus and virtually all (21/23) C1 cells receive inhibitory inputs from arterial and cardiopulmonary receptors.  (+info)

Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells. (3/128)

Molecular mechanisms underlying the generation of distinct cell phenotypes is a key issue in developmental biology. A major paradigm of determination of neural cell fate concerns the development of sympathetic neurones and neuroendocrine chromaffin cells from a common sympathoadrenal (SA) progenitor cell. Two decades of in vitro experiments have suggested an essential role of glucocorticoid receptor (GR)-mediated signalling in generating chromaffin cells. Targeted mutation of the GR should consequently abolish chromaffin cells. The present analysis of mice lacking GR gene product demonstrates that animals have normal numbers of adrenal chromaffin cells. Moreover, there are no differences in terms of apoptosis and proliferation or in expression of several markers (e.g. GAP43, acetylcholinesterase, adhesion molecule L1) of chromaffin cells in GR-deficient and wild-type mice. However, GR mutant mice lack the adrenaline-synthesizing enzyme PNMT and secretogranin II. Chromaffin cells of GR-deficient mice exhibit the typical ultrastructural features of this cell phenotype, including the large chromaffin granules that distinguish them from sympathetic neurones. Peripherin, an intermediate filament of sympathetic neurones, is undetectable in chromaffin cells of GR mutants. Finally, when stimulated with nerve growth factor in vitro, identical proportions of chromaffin cells from GR-deficient and wild-type mice extend neuritic processes. We conclude that important phenotypic features of chromaffin cells that distinguish them from sympathetic neurones develop normally in the absence of GR-mediated signalling. Most importantly, chromaffin cells in GR-deficient mice do not convert to a neuronal phenotype. These data strongly suggest that the dogma of an essential role of glucocorticoid signalling for the development of chromaffin cells must be abandoned.  (+info)

Adrenomedullary function is severely impaired in 21-hydroxylase-deficient mice. (4/128)

Deficiency of 21-hydroxylase (21-OH), one of the most common genetic defects in humans, causes low glucocorticoid and mineralocorticoid production by the adrenal cortex, but the effect of this disorder on the adrenomedullary system is unknown. Therefore, we analyzed the development, structure, and function of the adrenal medulla in 21-OH-deficient mice, an animal model resembling human congenital adrenal hyperplasia. Chromaffin cells of 21-OH-deficient mice exhibited ultrastructural features of neuronal transdifferentiation with reduced granules, increased rough endoplasmic reticulum and small neurite outgrowth. Migration of chromaffin cells in the adrenal to form a central medulla was impaired. Expression of phenylethanolamine-N-methyltransferase (PNMT) was reduced to 27 +/- 9% (P<0.05), as determined by quantitative TaqMan polymerase chain reaction, and there was a significant reduction of cells staining positive for PNMT in the adrenal medulla of the 21-OH-deficient mice. Adrenal contents of epinephrine were decreased to 30 +/- 2% (P<0. 01) whereas norepinephrine and dopamine levels were reduced to 57 +/- 4% (P<0.01) and 50 +/- 9% (P<0.05), respectively. 21-OH-deficient mice demonstrate severe adrenomedullary dysfunction, with alterations in chromaffin cell migration, development, structure, and catecholamine synthesis. This hitherto unrecognized mechanism may contribute to the frequent clinical, mental, and therapeutic problems encountered in humans with this genetic disease.  (+info)

Acetylcholinesterase activity, and neurofilament protein, and catecholamine synthesizing enzymes immunoreactivities in the mouse adrenal gland during postnatal development. (5/128)

The present study showed the acetylcholinesterase (AChE) activity, and neurofilament protein (NFP), catecholamine-synthesizing enzymes, dopamine beta-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) immunoreactivities in the mouse adrenal gland during postnatal development. From birth to postnatal-1-day, AChE activity was weakly and diffusely found in some medullary cells and in very few nerve fibers whereas strong NFP immunoreactivity was seen in a few ganglion cells and in remarkably numerous nerve fibers in the medulla. Almost all meduallary cells were reactive for both DBH and PNMT during this period. From postnatal-2- or -3-day to postnatal-1-week, strong AChE activity was observed in a few large ganglion cells, but the reaction was weak in clusters of chromaffin cells, and the number of strong AChE-active nerve fibers in the medulla was rapidly increased. From postnatal-2-day onwards, the number of NFP-immunoreactive nerve fibers in the medulla were remarkably numerous. Numerous chromaffin cells were reactive for both DBH and PNMT whereas some chromaffin cells were reactive for only DBH from postnatal-2-day onwards. These results suggest that drastic changes such as an increase of acetylcholine in the nerve fibers, differentiation of noradrenaline and adrenaline cells of the medulla may occur during this period. From postnatal-2-week to postnatal-3-week, weak AChE activity was seen in the clusters of several chromaffin cells and a few ganglion cells, and the number of AChE-active nerve fibers in the medulla was gradually increased. From postnatal-4-week to postnatal-8-week (adult), the distribution and frequency of AChE activity in the adrenal gland were similar to those at postnatal-3-week. In the adult, AChE activity was weakly seen in the clusters of several chromaffin cells showing noradrenaline fluorescence in the adrenal medulla. The noradrenaline cells were contacted by denser AChE-reactive nerve fibers than adrenaline cells. These results suggest that the development of cholinergic nervous system in the mouse adrenal medulla may be completed by postnatal-3-week.  (+info)

Lesions of the C1 catecholaminergic neurons of the ventrolateral medulla in rats using anti-DbetaH-saporin. (6/128)

Phenylethanolamine-N-methyltransferase (PNMT)-containing neurons in the rostral ventrolateral medulla (RVLM) are believed to play a role in cardiovascular regulation. To determine whether injection of anti-dopamine beta-hydroxylase (DbetaH)-saporin directly into the RVLM in rats could selectively destroy these cells and thereby provide an approach for evaluating their role in cardiovascular regulation, we studied rats 2 wk after unilateral injection of 21 ng anti-DbetaH-saporin into the RVLM. There was an approximately 90% reduction in the number of PNMT-positive neurons in the RVLM, although the number of non-C1, spinally projecting barosensitive neurons of this area was not altered. The A5 cell group was the only other population of DbetaH-containing cells that was significantly depleted. The depressor response evoked by injection of tyramine into the RVLM was abolished by prior injection of toxin. The pressor response evoked by injection of glutamate into the RVLM was attenuated ipsilateral to the toxin injection but was potentiated contralateral to the toxin injection. Thus anti-DbetaH-saporin can be used to make selective lesions of PNMT-containing cells, allowing for the evaluation of their role in cardiovascular regulation.  (+info)

Nicotine infusion modulates immobilization stress-triggered induction of gene expression of rat catecholamine biosynthetic enzymes. (7/128)

The relationship between nicotine and stress is complex and paradoxical. Although people claim they smoke because it relaxes them, nicotine can trigger some of the effects observed with stress, including the release and synthesis of the catecholamines and their biosynthetic enzymes. This study examined one aspect of this confusing relationship between nicotine and stress. Multiple injections of nicotine bitartrate (5 mg/kg) elevated mRNA levels for the catecholamine biosynthetic enzymes, tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), and phenylethanolamine N-methyltransferase, and of preproneuropeptide Y in rat adrenal medulla more than did 1 mg/kg of nicotine bitartrate. In the locus ceruleus, substantia nigra, and ventral tegmental area both doses equally induced TH mRNA levels. Nicotine infusion (15 mg/kg/day) did not affect adrenal mRNA levels for any of the genes of interest and did not increase plasma corticosterone levels. However, in rats pre-exposed to nicotinic infusions, the response to a single immobilization (IMO) stress was markedly attenuated with respect to changes in adrenomedullary TH, DBH, and phenylethanolamine N-methyltransferase mRNA levels and in c-Fos protein levels. In the central nervous system, the chronic infusion of nicotine prevented the induction of TH mRNA by repeated IMO stress in the ventral tegmental area (but not in substantia nigra) and of DBH mRNA by single IMO in the locus ceruleus. These findings may explain some of the complex interactions between stress and exposure to nicotine.  (+info)

Actions of hypoxia on catecholamine synthetic enzyme mRNA expression before and after development of adrenal innervation in the sheep fetus. (8/128)

We have investigated adrenal mRNA expression of the catecholamine synthetic enzymes tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) following acute hypoxia in fetal sheep before (< 105 days gestation, n = 20) and after (> 125 days gestation, n = 20) the development of adrenal innervation and following pretreatment with the nicotinic receptor anatgonist hexamethonium (n = 12). Total RNA was extracted from fetal adrenal glands collected at specific time points at 3-20 h after the onset of either hypoxia ( approximately 50% reduction in fetal arterial oxygen saturation (SO2) for 30 min), or normoxia. Before 105 days, there was a decrease in adrenal TH mRNA expression at 20 h after hypoxia and adrenal TH mRNA expression was directly related to the changes in arterial PO2 measured during normoxia and hypoxia. After 125 days, adrenal TH mRNA levels were suppressed for up to 12 h following hypoxia. In both age groups, adrenal PNMT mRNA expression increased at 3-5 h after hypoxia and was inversely related to the changes in fetal arterial PO2 during normoxia or hypoxia. After 125 days, the administration of hexamethonium (25 mg kg(-1), I.V.) reduced TH mRNA but not PNMT mRNA expression after normoxia. After hexamethonium pretreatment, there was no significant change in either adrenal TH or PNMT mRNA expression following hypoxia. We conclude that acute hypoxia differentially regulates adrenal TH and PNMT mRNA expression in the fetal sheep both before and after the development of adrenal innervation. After the development of adrenal innervation, however, the effect of acute hypoxia upon adrenal TH and PNMT mRNA expression is dependent upon neurogenic input acting via nicotinic receptors.  (+info)