Real-time reverse transcriptase PCR for the endogenous koala retrovirus reveals an association between plasma viral load and neoplastic disease in koalas. (1/47)

Koala retrovirus (KoRV) is a newly described endogenous retrovirus and is unusual in that inserts comprise a full-length replication competent genome. As koalas are known to suffer from an extremely high incidence of leukaemia/lymphoma, the association between this retrovirus and disease in koalas was examined. Using quantitative real-time reverse transcriptase PCR it was demonstrated that KoRV RNA levels in plasma are significantly increased in animals suffering from leukaemia or lymphoma when compared with healthy animals. Increased levels of KoRV were also seen for animals with clinical chlamydiosis. A significant positive association between viral RNA levels and age was also demonstrated. Real-time PCR demonstrated as much as 5 log variation in KoRV proviral DNA levels in genomic DNA extracted from whole blood from different animals. Taken together these data indicate that KoRV is an active endogenous retrovirus and suggests that it may be causally linked to neoplastic disease in koalas.  (+info)

Association of uterine and salpingeal fibrosis with chlamydial hsp60 and hsp10 antigen-specific antibodies in Chlamydia-infected koalas. (2/47)

Infection by Chlamydia pneumoniae or Chlamydia pecorum commonly causes chronic, fibrotic disease of the urogenital tracts of female koalas. Studies of humans have associated titers of serum immunoglobulin G (IgG) against chlamydial hsp60 and hsp10 antigens with chronic infection, salpingeal fibrosis, and tubal infertility. To determine whether a similar relationship exists in Chlamydia-infected koalas, samples were collected opportunistically from 34 wild female koalas and examined by gross pathology and histopathology, PCR, and immunohistochemistry for Chlamydia spp. and enzyme-linked immunosorbent assay for serological responses to chlamydial hsp10 and hsp60 antigens. Greater anti-hsp titers occurred in Chlamydia-infected koalas with fibrous occlusion of the uterus or uterine tube than in other Chlamydia-infected koalas (for hsp10 IgG, P = 0.005; for hsp60 IgG, P = 0.001; for hsp10 IgA, P = 0.04; for hsp60 IgA, P = 0.09). However, as in humans, some koalas with tubal occlusion had low titers. Among Chlamydia-infected koalas with tubal occlusion, those with low titers were more likely to have an active component to their ongoing uterine or salpingeal inflammation (P = 0.007), such that the assay predicted, with 79% sensitivity and 92% specificity, tubal occlusion where an active component of inflammation was absent. Findings of this study permit advancement of clinical and epidemiological studies of host-pathogen-environment interactions and pose intriguing questions regarding the significance of the Th1/Th2 paradigm and antigen-presenting and inflammation-regulating capabilities of uterine epithelial cells and the roles of latency and reactivation of chlamydial infections in pathogenesis of upper reproductive tract disease of koalas.  (+info)

Cypellogins A, B and C, acylated flavonol glycosides from Eucalyptus cypellocarpa. (3/47)

Three new acylated flavonol glycosides, cypellogins A (1), B (2) and C (3), along with eight known phenolic compounds, were isolated from the dried leaves of Eucalyptus cypellocarpa, and their structures were elucidated using spectroscopic methods, including 2D NMR experiments and chemical evidence.  (+info)

In vitro characterization of a koala retrovirus. (4/47)

Recently, a new endogenous koala gammaretrovirus, designated KoRV, was isolated from koalas. The KoRV genome shares 78% nucleotide identity with another gammaretrovirus, gibbon ape leukemia virus (GALV). KoRV is endogenous in koalas, while GALV is exogenous, suggesting that KoRV predates GALV and that gibbons and koalas acquired the virus at different times from a common source. We have determined that subtle adaptive differences between the KoRV and GALV envelope genes account for differences in their receptor utilization properties. KoRV represents a unique example of a gammaretrovirus whose envelope has evolved to allow for its expanded host range and zoonotic potential.  (+info)

Transspecies transmission of the endogenous koala retrovirus. (5/47)

The koala retrovirus (KoRV) is a gammaretrovirus closely related to the gibbon ape leukemia virus and induces leukemias and immune deficiencies associated with opportunistic infections, such as chlamydiosis. Here we characterize a KoRV newly isolated from an animal in a German zoo and show infection of human and rat cell lines in vitro and of rats in vivo, using immunological and PCR methods for virus detection. The KoRV transmembrane envelope protein (p15E) was cloned and expressed, and p15E-specific neutralizing antibodies able to prevent virus infection in vitro were developed. Finally, evidence for immunosuppressive properties of the KoRV was obtained.  (+info)

Use of a GnRH agonist and hCG to obtain an index of testosterone secretory capacity in the koala (Phascolarctos cinereus). (6/47)

Testosterone secretion in mammals typically occurs in random pulses such that a single blood sample provides limited information on reproductive endocrine status. However, it has been shown in several species that an index of the prevailing testosterone biosynthetic capacity of the testes can be obtained by measuring the increase in circulating testosterone after injection of a GnRH agonist or human chorionic gonadotrophin (hCG). Hence, the aims of the present study were to examine fluctuations in testosterone secretion in the koala (n = 6) over a 24-hour period and then characterise testosterone secretion after injection of the GnRH agonist buserelin (4 micro g) or hCG (1000 IU). The latter was used to establish an index of the prevailing testosterone biosynthetic capacity of the koala testis. Individual koalas showed major changes in blood testosterone concentrations over 24 hours, but there was no apparent diurnal pattern of testosterone secretion (P > .05). Injection of buserelin and hCG resulted in an increase (P < .05) in blood testosterone concentration. After injection of exogenous hormone, near maximal concentrations of testosterone occurred at around 60 minutes. There was a tendency for plasma testosterone to decline after 90 minutes with buserelin, but concentrations remained close to the upper limit for 240 minutes with hCG. There were strong positive correlations between the average testosterone concentration over 24 hours and the maximum observed testosterone concentration after stimulation with GnRH and hCG (GnRH, r = .772; P = .07 and hCG, r = 1.0; P < .01). The findings in the present study confirmed that individual male koalas can show large fluctuations in blood testosterone concentrations over time and that a GnRH agonist and hCG can be used in the koala to obtain an index of the prevailing steroidogenic capacity of the testes.  (+info)

The zona pellucida of the koala (Phascolarctos cinereus): its morphogenesis and thickness. (7/47)

In this study the ultrastructural organization of the koala oocyte and the thickness of the surrounding extracellular coat, the zona pellucida, has been determined to ascertain whether there is coevolution of the morphology of the female gamete with that of the highly divergent male gamete that is found in this marsupial species. Ovaries from several adult koalas were obtained and prepared for transmission electron microscopy. Oocytes in large tertiary follicles were somewhat smaller than those of most other marsupials, although their ultrastructural organization appeared similar and included many yolk vesicles. The zona pellucida surrounding the oocytes in tertiary follicles was approximately 8 microm thick and thus is of similar thickness to that of some eutherian mammals but at least twice as thick as that of most marsupial species so far studied. The results indicate that the koala oocyte is unusually small for a marsupial species whereas the zona pellucida is, by contrast, much thicker. How this relates to sperm-egg interaction at the time of fertilization has yet to be determined.  (+info)

Papillomavirus in healthy skin of Australian animals. (8/47)

Papillomaviruses are a group of ubiquitous viruses that are often found in normal skin of humans, as well as a range of different vertebrates. In this study, swab samples collected from the healthy skin of 225 Australian animals from 54 species were analysed for the presence of papillomavirus DNA with the general skin papillomavirus primer pair FAP59/FAP64. A total of five putative and potential new animal papillomavirus types were identified from three different animal species. The papillomaviruses were detected in one monotreme and two marsupial species: three from koalas, and one each from an Eastern grey kangaroo and an echidna. The papillomavirus prevalence in the three species was 14 % (10/72) in koalas, 20 % (1/5) in echidnas and 4 % (1/23) in Eastern grey kangaroos. Phylogenetic analysis was performed on the putative koala papillomavirus type that could be cloned and it appears in the phylogenetic tree as a novel putative papillomavirus genus. The data extend the range of species infected by papillomaviruses to the most primitive mammals: the monotremes and the marsupials.  (+info)