The amino acid sequence of Neurospora NADP-specific glutamate dehydrogenase. Peptides from digestion with a staphylococcal proteinase. (1/6114)

The extracellular proteinase of Staphylococcus aureus strain V8 was used to digest the NADP-specific glutamate dehydrogenase of Neurospora crassa. Of 35 non-overlapping peptides expected from the glutamate content of the polypeptide chain, 29 were isolated and substantially sequenced. The sequences obtained were valuable in providing overlaps for the alignment of about two-thirds of the sequences found in tryptic peptides [Wootton, J. C., Taylor, J, G., Jackson, A. A., Chambers, G. K. & Fincham, J. R. S. (1975) Biochem. J. 149, 739-748]. The blocked N-terminal peptide of the protein was isolated. This peptide was sequenced by mass spectrometry, and found to have N-terminal N-acetylserine by Howard R. Morris and Anne Dell, whose results are presented as an Appendix to the main paper. The staphylococcal proteinase showed very high specificity for glutamyl bonds in the NH4HCO3 buffer used. Partial splits of two aspartyl bonds, both Asp-Ile, were probably attributable to the proteinase. No cleavage of glutaminyl or S-carboxymethylcysteinyl bonds was found. Additional experimental detail has been deposited as Supplementary Publication SUP 50053 (5 pages) with the British Library (Lending Division), Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K, from whom copies may be obtained under the terms given in Biochem. J. (1975) 1458 5.  (+info)

Purification of gibberellic acid-induced lysosomes from wheat aleurone cells. (2/6114)

Using isopycnic density gradient centrifugation, lysosomes were concentrated in a single region of a sucrose-Ficoll gradient (p = 1-10 g cm-3), well separated from most other cell organelles. Gibberellic acid-induced lysosomes were found to be rich in alpha-amylase and protease but not ribonuclease. The lysosomal band also contained a majority of the NADH2-cytochrome c reductase, a marker enzyme for endoplasmic reticulum, found in the gradient. Examination of electron micrographs revealed that a purified band of lyosomes contained at least 3 vesicle types, ranging in size from 0-1 to 0-5 mum. The significance of these findings to proposed mechanisms of action of gibberellic acid is discussed.  (+info)

5'-Nucleotidase activity of mouse peritoneal macrophages. I. Synthesis and degradation in resident and inflammatory populations. (3/6114)

Mouse resident peritoneal macrophages display sufficient 5'-nucleotidase activity to hydrolyze 58 nm AMP/min per cell protein. This activity increases approximately 163 nm AMP/min per mg after 72 h in culture. The enzyme is renewed in unstimulated cells with a half-time of 13.9 h. The activity is not reduced by treatment of intact cells with a variety of proteolytic enzymes, including trypsin, pronase, urokinase, and plasmin. Cells obtained from an inflammatory exudate have diminished or absent levels of enzyme activity. Endotoxin-elicited cells display enzyme activitiy of 20.9 nm AMP/min per mg, while thioglycollate-stimulated macrophages have no detectable activity. The reduced level of activity in endotoxin-stimulated cells is due to their elevated rate of enzyme degradation, with a half-time of 6.9 h. Their rate of enzyme synthesis is essentially normal. No evidence for latent enzyme activity could be obtained in thioglycollate-stimulated cells, nor do these cells produce any inhibition of normal cell enzyme activity. Serum deprivation reduces the enzyme activity of resident cells to about 45% of control activity. These conditions do not significantly affect the rate of enzyme synthesis, but again are explainable by an increase in the rate of enzyme degradation. Pinocytic rate is elevated in endotoxin-stimulated cells which show a more rapid rate of enzyme degradation than unstimulated cells do. However, in serum-free conditions, the rate of enzyme degradation is doubled with no change in the pinocytic rate of the cells.  (+info)

Genome-linked protein associated with the 5' termini of bacteriophage phi29 DNA. (4/6114)

A DNA-protein complex was isolated from Bacillus subtilis bacteriophage phi29 by sucrose gradient sedimentation or gel filtration in the presence of agents known to break noncovalent bonds. A 28,000-dalton protein was released from this complex by subsequent hydrolysis of the DNA. The DNA-protein complex was examined for its susceptibility to enzymes which act upon the 5' and 3' termini of DNA molecules. It was susceptible to exonucleolytic degradation from the 3' termini by exonuclease III but not from the 5' termini by lambda exonuclease. Attempts to label radioactively the 5' termini by phosphorylation with T4 polynucleotide kinase were unsuccessful despite prior treatment with alkaline phosphatase or phosphatase treatment of denatured DNA. Removal of the majority of the bound protein by proteolytic digestion did not increase susceptibility. These results suggest that the linked protein is covalently attached to the 5' termini of phi29 DNA.  (+info)

Prophenoloxidase-activating enzyme of the silkworm, Bombyx mori. Purification, characterization, and cDNA cloning. (5/6114)

Prophenoloxidase-activating enzyme (PPAE) was purified to homogeneity as judged by SDS-polyacrylamide gel electrophoresis from larval cuticles of the silkworm, Bombyx mori. The purified PPAE preparation was shown to be a mixture of the isozymes of PPAE (PPAE-I and PPAE-II), which were eluted at different retention times in reversed-phase high performance liquid chromatography. PPAE-I and PPAE-II seemed to be post translationally modified isozymes and/or allelic variants. Both PPAE isozymes were proteins composed of two polypeptides (heavy and light chains) that are linked by disulfide linkage(s) and glycosylated serine proteases. The results of cDNA cloning, peptide mapping, and amino acid sequencing of PPAE revealed that PPAE is synthesized as prepro-PPAE with 441 amino acid residues and is activated from pro-PPAE by cleavage of a peptide bond between Lys152 and Ile153. The homology search showed 36.9% identity of PPAE to easter, which is a serine protease involved in dorso-ventral pattern formation in the Drosophila embryo, and indicated the presence of two consecutive clip-like domains in the light chain. A single copy of the PPAE gene was suggested to be present in the silkworm genome. In the fifth instar larvae, PPAE transcripts were detected in the integument, hemocytes, and salivary glands but not in the fat body or mid gut. A polypeptide cross-reactive to mono-specific anti-PPAE/IgG was transiently detected in the extract of eggs between 1 and 3 h after they were laid.  (+info)

Direct evidence of Na+/Ca2+ exchange in squid rhabdomeric membranes. (6/6114)

Na+/Ca2+ exchange has been investigated in squid (Loligo pealei) rhabdomeric membranes. Ca2+-containing vesicles have been prepared from purified rhabdomeric membranes by extrusion through polycarbonate filters of 1-micrometer pore size. After removal of external Ca2+, up to 90% of the entrapped Ca2+ could be specifically released by the addition of Na+; this finding indicates that most of the vesicles contained Na+/Ca2+ exchanger. The Na+-induced Ca2+ efflux had a half-maximum value (K1/2) of approximately 44 mM and a Hill coefficient of approximately 1.7. The maximal Na+-induced Ca2+ efflux was approximately 0.6 nmol Ca2+. s-1. mg protein-1. Similar Na+-induced Ca2+ effluxes were measured if K+ was replaced with Li+ or Cs+. Vesicles loaded with Ca2+ by Na+/Ca2+ exchange also released this Ca2+ by Na+/Ca2+ exchange, suggesting that Na+/Ca2+ exchange operated in both forward and reverse modes. Limited proteolysis by trypsin resulted in a rate of Ca2+ efflux enhanced by approximately fivefold when efflux was activated with 95 mM NaCl. For vesicles subjected to limited proteolysis by trypsin, Na+/Ca2+ exchange was characterized by a K1/2 of approximately 25 mM and a Hill coefficient of 1.6. For these vesicles, the maximal Na+-induced Ca2+ efflux was about twice as great as in control vesicles. We conclude that Na+/Ca2+ exchange proteins localized in rhabdomeric membranes mediate Ca2+ extrusion in squid photoreceptors.  (+info)

A study of the genetical structure of the Cuban population: red cell and serum biochemical markers. (7/6114)

Gene frequencies of several red cell and serum gentic markers were determined in the three main racial groups--whites, mulattoes and Negroes--of the Cuban population. The results were used to estimate the relative contribution of Caucasian and Negro genes to the genetic makeup of these three groups and to calculate the frequencies of these genes in the general Cuban population.  (+info)

Identification of kallidin degrading enzymes in the isolated perfused rat heart. (8/6114)

Kallidin (KD) is an important vasoactive kinin whose physiological effects are strongly dependent on its degradation through local kininases. In the present study, we examined the spectrum of these enzymes and their contribution to KD degradation in isolated perfused rat hearts. By inhibiting angiotensin-converting enzyme (ACE), aminopeptidase M (APM) and neutral endopeptidase (NEP) with ramiprilat (0.25 microM), amastatin (40 microM) and phosphoramidon (1 microM), respectively, relative kininase activities were obtained. APM (44%) and ACE (35%) are the main KD degrading enzymes in rat heart; NEP (7%) plays a minor role. A participation of carboxypeptidase N (CPN) could not be found.  (+info)