A quantitative three-dimensional model of the Drosophila optic lobes. (1/178)

A big step in the neurobiology of Drosophila would be to establish a standard for brain anatomy to which to relate morphological, developmental and genetic data. We propose that only an average brain and its variance would be a biologically meaningful reference and have developed an averaging procedure. Here, we present a brief outline of this method and apply it to the optic lobes of Drosophila melanogaster wild-type Canton S. Whole adult brains are stained with a fluorescent neuropil marker and scanned with the confocal microscope. The resulting three-dimensional data sets are automatically aligned into a common coordinate system and intensity averages calculated. We use effect-size maps for the fast detection of differences between averages. For morphometric analysis, neuropil structures are labelled and superimposed to give a three-dimensional probabilistic map. In the present study, the method was applied to 66 optic lobes. We found their size, shape and position to be highly conserved between animals. Similarity was even higher between left and right optic lobes of the same animal. Sex differences were more pronounced. Female optic lobes were 6% larger than those of males. This value corresponds well with the higher number of ommatidia in females. As females have their additional ommatidia dorsally and ventrally, the additional neuropil in the medulla, lobula and lobula plate, accordingly, was found preferentially at these locations. For males, additional neuropil was found only at the posterior margin of the lobula. This finding supports the notion of male-specific neural processing in the lobula as described for muscid and calliphorid flies.  (+info)

The control of cell fate in the embryonic visual system by atonal, tailless and EGFR signaling. (2/178)

We describe here the role of the transcription factors encoding genes tailless (tll), atonal (ato), sine oculis (so), eyeless (ey) and eyes absent (eya), and EGFR signaling in establishing the Drosophila embryonic visual system. The embryonic visual system consists of the optic lobe primordium, which, during later larval life, develops into the prominent optic lobe neuropiles, and the larval photoreceptor (Bolwig's organ). Both structures derive from a neurectodermal placode in the embryonic head. Expression of tll is normally confined to the optic lobe primordium, whereas ato appears in a subset of Bolwig's organ cells that we call Bolwig's organ founders. Phenotypic analysis, using specific markers for Bolwig's organ and the optic lobe, of tll loss- and gain-of-function mutant embryos reveals that tll functions to drive cells to optic lobe as opposed to Bolwig's organ fate. Similar experiments indicate that ato has the opposite effect, namely driving cells to a Bolwig's organ fate. Since we can show that tll and ato do not regulate each other, we propose a model wherein tll expression restricts the ability of cells to respond to signaling arising from ato-expressing Bolwig's organ pioneers. Our data further suggest that the Bolwig's organ founder cells produce Spitz (the Drosophila TGFalpha homolog) signal, which is passed to the neighboring secondary Bolwig's organ cells where it activates the EGFR signaling cascade and maintains the fate of these secondary cells. The regulators of tll expression in the embryonic visual system remain elusive, as we were unable to find evidence for regulation by the 'early eye genes' so, eya and ey, or by EGFR signaling.  (+info)

Neuropil pattern formation and regulation of cell adhesion molecules in Drosophila optic lobe development depend on synaptobrevin. (3/178)

To investigate a possible involvement of synaptic machinery in Drosophila visual system development, we studied the effects of a loss of function of neuronal synaptobrevin, a protein required for synaptic vesicle release. Expression of tetanus toxin light chain (which cleaves neuronal synaptobrevin) and genetic mosaics were used to analyze neuropil pattern formation and levels of selected neural adhesion molecules in the optic lobe. We show that targeted toxin expression in the developing optic lobe results in disturbances of the columnar organization of visual neuropils and of photoreceptor terminal morphology. IrreC-rst immunoreactivity in neuropils is increased after widespread expression of toxin. In photoreceptors, targeted toxin expression results in increased Fasciclin II and chaoptin but not IrreC-rst immunoreactivity. Axonal pathfinding and programmed cell death are not affected. In genetic mosaics, patches of photoreceptors that lack neuronal synaptobrevin exhibit the same phenotypes observed after photoreceptor-specific toxin expression. Our results demonstrate the requirement of neuronal synaptobrevin for regulation of cell adhesion molecules and development of the fine structure of the optic lobe. A possible causal link to fine-tuning processes that may include synaptic plasticity in the development of the Drosophila CNS is discussed.  (+info)

Autoregulation of the Drosophila disconnected gene in the developing visual system. (4/178)

The Drosophila disconnected (disco) gene is required for the formation of appropriate connections between the larval optic nerve and its target cells in the brain. The disco gene encodes a nuclear protein with two zinc fingers, which suggests that the gene product is a transcription factor. Here, we present data supporting this notion. We find that disco expression in the optic lobe primordium, a group of cells contacted by the developing optic nerve, depends on an autoregulatory feedback loop. We show that wild-type disco function is required for maintenance of disco mRNA and protein expression in the developing optic lobe. In addition, we demonstrate that ubiquitous Disco activity supplied by a heat-inducible gene construct activates expression from the endogenous disco gene specifically in the optic lobe primordium. Consistent with a role of Disco as a transcriptional regulatory protein, we show that portions of the Disco protein are capable of activating the transcription of reporter constructs in a heterologous system. Moreover, we find that the zinc finger portion of Disco binds in vitro to sequences located near the disco transcription unit, suggesting that Disco autoregulates its transcription in the optic lobe primordium by direct binding to a regulatory element in its own promoter.  (+info)

A transient specialization of the microtubule cytoskeleton is required for differentiation of the Drosophila visual system. (5/178)

Drosophila beta3-tubulin is an essential isoform expressed during differentiation of many cell types in embryos and pupae. We report here that during pupal development transient beta3 expression demarcates a unique subset of neurons in the developing adult visual system. beta3 is coassembled into microtubules with beta1, the sole beta-tubulin isoform in the permanent microtubule cytoskeleton of the adult eye and brain. Examination of beta3 mutant phenotypes showed that beta3 is required for axonal patterning and connectivity and for spatial positioning within the optic lobe. Comparison of the phenotypes of beta3 mutations with those that result from disruption of the Hedgehog signaling pathway shows that beta3 functions early in the establishment of the adult visual system. Our data support the hypothesis that beta3 confers specialized properties on the microtubules into which it is incorporated. Thus a transient specialization of the microtubule cytoskeleton during differentiation of a specific subset of the neurons has permanent consequences for later cell function.  (+info)

Ecdysteroid coordinates optic lobe neurogenesis via a nitric oxide signaling pathway. (6/178)

Proliferation of neural precursors in the optic lobe of Manduca sexta is controlled by circulating steroids and by local production of nitric oxide (NO). Diaphorase staining, anti-NO synthase (NOS) immunocytochemistry and the NO-indicator, DAF-2, show that cells throughout the optic anlage contain NOS and produce NO. Signaling via NO inhibits proliferation in the anlage. When exposed to low levels of ecdysteroid, NO production is stimulated and proliferation ceases. When steroid levels are increased, NO production begins to decrease within 15 minutes independent of RNA or protein synthesis and cells rapidly resume proliferation. Resumption of proliferation is not due simply to the removal of NO repression though, but also requires an ecdysteroid stimulatory pathway. The consequence of these opposing pathways is a sharpening of the responsiveness to the steroid, thereby facilitating a tight coordination between development of the different elements of the adult visual system.  (+info)

Performance of fly visual interneurons during object fixation. (7/178)

Neurons involved in the processing of optic flow are usually analyzed using stimuli designed by the experimenter. However, in real life optic flow depends on locomotive behavior. We characterized the performance of motion-sensitive neurons in the visual system of the fly using optic flow as occurring in behavioral situations during object fixation. Optic flow generated by tethered flying flies in a flight simulator was subsequently replayed while recording the responses of two cell types in the fly's motion pathway presumably involved in the detection of objects and of deviations from a straight flight course, respectively. FD1b cells, which are representatives of the so-called figure-detection cells, responded very specifically to object motion. Although object selectivity of these cells is attributable to inhibition during large-field motion, the influence of background motion during object fixation was almost negligible. In contrast, the cells of the so-called horizontal system (HS cells) are most sensitive to background motion, as elicited during deviations of the animal from its course. During object fixation, the responses of HS cells depended on both object and background motion. The simulated distance of the background to the fly did not have a strong influence on the responses of either cell type. The specificity for detecting deviations from a straight course is enhanced by subtraction of the signals of HS cells in both halves of the brain. In contrast, the FD1b cells in the two halves of the brain need to interact in a nonlinear way to ensure efficient detection of objects.  (+info)

Soluble guanylate cyclase is required during development for visual system function in Drosophila. (8/178)

A requirement for nitric oxide (NO) in visual system development has been demonstrated in many model systems, but the role of potential downstream effector molecules has not been established. Developing Drosophila photoreceptors express an NO-sensitive soluble guanylate cyclase (sGC), whereas the optic lobe targets express NO synthase. Both of these molecules are expressed after photoreceptor outgrowth to the optic lobe, when retinal growth cones are actively selecting their postsynaptic partners. We have previously shown that inhibition of the NO-cGMP pathway in vitro leads to overgrowth of retinal axons. Here we examined flies mutant for the alpha subunit gene of the Drosophila sGC (Gcalpha1). This mutation severely reduced but did not abolish GCalpha1 protein levels and NO-stimulated sGC activity in the developing photoreceptors. Although few mutant individuals possessed a disorganized retinal projection pattern, pharmacological NOS inhibition during metamorphosis increased this disorganization in mutants to a greater degree than in the wild type. Adult mutants lacked phototactic behavior, and the off-transient component of electroretinograms was frequently absent or greatly reduced in amplitude. Normal phototaxis and off-transient amplitude were restored by heat shock-mediated Gcalpha1 expression applied during metamorphosis but not in the adult. We propose that diminished sGC activity in the visual system during development causes inappropriate or inadequate formation of first-order retinal synapses, leading to defects in visual system function and visually mediated behavior.  (+info)