Twinkling artifact in color Doppler imaging of the orbit. (1/42)

OBJECTIVE: To show an artifact related to color Doppler flow imaging of the orbit. METHODS: Three patients with strongly reflective structures in the orbit were selected from those routinely referred by clinicians for color Doppler ultrasonography of the orbit. Gray scale and color flow images were obtained with a 7.5-MHz linear array probe for a region with strongly reflective structures. A spectral display was acquired to confirm the presence of blood flow. RESULTS: One patient had a metallic foreign body just behind the bulb; another had calcification within the irregular mass of phthisis bulbi; and the third had hyperechoic drusen in the periphery of the intraocular melanoma. The color mosaic, suggesting the presence of blood flow, was detected beyond all hyperechoic structures. Close vertical bands with no outer wrapping were detected in the spectrum display, obtained by placing the sample volume on the region of color flow. The artificial color flow was recognized as a color Doppler twinkling artifact. CONCLUSIONS: The color flow beyond the strongly reflecting structures in the orbit might be mistakenly interpreted as real blood flow if an examiner is not familiar with the artifact. It should prompt further imaging with spectral Doppler ultrasonography.  (+info)

Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. (2/42)

Drusen are extracellular deposits that accumulate below the retinal pigment epithelium on Bruch's membrane and are risk factors for developing age-related macular degeneration (AMD). The progression of AMD might be slowed or halted if the formation of drusen could be modulated. To work toward a molecular understanding of drusen formation, we have developed a method for isolating microgram quantities of drusen and Bruch's membrane for proteome analysis. Liquid chromatography tandem MS analyses of drusen preparations from 18 normal donors and five AMD donors identified 129 proteins. Immunocytochemical studies have thus far localized approximately 16% of these proteins in drusen. Tissue metalloproteinase inhibitor 3, clusterin, vitronectin, and serum albumin were the most common proteins observed in normal donor drusen whereas crystallin was detected more frequently in AMD donor drusen. Up to 65% of the proteins identified were found in drusen from both AMD and normal donors. However, oxidative protein modifications were also observed, including apparent crosslinked species of tissue metalloproteinase inhibitor 3 and vitronectin, and carboxyethyl pyrrole protein adducts. Carboxyethyl pyrrole adducts are uniquely generated from the oxidation of docosahexaenoate-containing lipids. By Western analysis they were found to be more abundant in AMD than in normal Bruch's membrane and were found associated with drusen proteins. Carboxymethyl lysine, another oxidative modification, was also detected in drusen. These data strongly support the hypothesis that oxidative injury contributes to the pathogenesis of AMD and suggest that oxidative protein modifications may have a critical role in drusen formation.  (+info)

The potential role of amyloid beta in the pathogenesis of age-related macular degeneration. (3/42)

Drusen are extracellular deposits that lie beneath the retinal pigment epithelium (RPE) and are the earliest signs of age-related macular degeneration (AMD). Recent proteome analysis demonstrated that amyloid beta (Abeta) deposition was specific to drusen from eyes with AMD. To work toward a molecular understanding of the development of AMD from drusen, we investigated the effect of Abeta on cultured human RPE cells as well as ocular findings in neprilysin gene-disrupted mice, which leads to an increased deposition Abeta. The results showed that Abeta treatment induced a marked increase in VEGF as well as a marked decrease in pigment epithelium-derived factor (PEDF). Conditioned media from Abeta-exposed RPE cells caused a dramatic increase in tubular formation by human umbilical vein endothelial cells. Light microscopy of senescent neprilysin gene-disrupted mice showed an increased number of degenerated RPE cells with vacuoles. Electron microscopy revealed basal laminar and linear deposits beneath the RPE layer, but we did not observe choroidal neovascularization (CNV). The present study demonstrates that Abeta accumulation affects the balance between VEGF and PEDF in the RPE, and an accumulation of Abeta reproduces features characteristic of human AMD, such as RPE atrophy and basal deposit formation. Some other factors, such as breakdown of integrity of Bruch membrane, might be necessary to induce CNV of AMD.  (+info)

Bilateral optic disc swelling; is a CT scan necessary? (4/42)

A 47 year old man sustained a head injury after tripping. He presented to the accident and emergency department next morning where head x ray revealed no fractures. However, the casualty doctor found bilateral blurred optic disc margins on ophthalmoscopy. Although his head injury was classed as non-serious, an urgent computed tomography scan was ordered and an ophthalmic opinion sought. After detailed retinal examination, the ophthalmologist made a diagnosis of bilateral optic nerve head drusen (ONHD), which was confirmed by a B-scan ultrasound. The patient was advised not to drive (due to constricted visual fields associated with ONHD) and to inform his siblings of his condition so they could also be assessed. In cases of apparent optic disc swellings, it is essential to distinguish between true and pseudo-papillo-oedema to avoid subjecting patients to unnecessary neuroimaging procedures and associated exposure to radiation.  (+info)

Ultrahigh resolution optical coherence tomography in non-exudative age related macular degeneration. (5/42)

AIM: To describe the appearance of the non-exudative forms of age related macular degeneration (AMD) as imaged by ultrahigh resolution optical coherence tomography (UHR-OCT). METHODS: A UHR-OCT ophthalmic imaging system, which utilises a femtosecond laser light source capable of approximately 3 mum axial resolution, was employed to obtain retinal cross sectional images of patients with non-exudative AMD. Observational studies of the resulting retinal images were performed. RESULTS: 52 eyes of 42 patients with the clinical diagnosis of non-exudative AMD were imaged using the UHR-OCT system. 47 of the 52 (90%) eyes had the clinical diagnosis of drusen and/or retinal pigment epithelial (RPE) changes. In these patients, three patterns of drusen were apparent on UHR-OCT: (1) distinct RPE excrescences, (2) a saw toothed pattern of the RPE, and (3) nodular drusen. On UHR-OCT, three eyes (6%) with a clinical diagnosis of non-exudative AMD had evidence of fluid under the retina or RPE. Two of these three patients had findings suspicious for subclinical choroidal neovascularisation on UHR-OCT. CONCLUSION: With the increased resolution of UHR-OCT compared to standard OCT, the involvement of the outer retinal layers are more clearly defined. UHR-OCT may allow for the detection of early exudative changes not visible clinically or by angiography.  (+info)

Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. (6/42)

Oxidative stress has long been linked to the pathogenesis of neurodegenerative diseases; however, whether it is a cause or merely a consequence of the degenerative process is still unknown. We show that mice deficient in Cu, Zn-superoxide dismutase (SOD1) have features typical of age-related macular degeneration in humans. Investigations of senescent Sod1(-/-) mice of different ages showed that the older animals had drusen, thickened Bruch's membrane, and choroidal neovascularization. The number of drusen increased with age, and exposure of young Sod1(-/-) mice to excess light induced drusen. The retinal pigment epithelial cells of Sod1(-/-) mice showed oxidative damage, and their beta-catenin-mediated cellular integrity was disrupted, suggesting that oxidative stress may affect the junctional proteins necessary for the barrier integrity of the retinal pigment epithelium. These observations strongly suggest that oxidative stress may play a causative role in age-related retinal degeneration, and our findings provide evidence for the free radical theory of aging. In addition, these results demonstrate that the Sod1(-/-) mouse is a valuable animal model to study human age-related macular degeneration.  (+info)

A new autosomal recessive syndrome consisting of posterior microphthalmos, retinitis pigmentosa, foveoschisis, and optic disc drusen is caused by a MFRP gene mutation. (7/42)

PURPOSE: To describe the clinical and genetic characteristics of a new ophthalmic syndrome, which consists of posterior microphthalmos, retinitis pigmentosa, foveoschisis, and optic disc drusen, that segregates as an autosomal recessive trait in a family with four affected siblings. The membrane-type frizzled-related protein (MFRP) and CEH10 homeodomain-containing homolog (CHX10) genes, previously implicated in autosomal recessive forms of nanophthalmos/microphthalmos, were analyzed as candidate genes for this novel disease. METHODS: Complete ophthalmologic examinations were performed in four affected siblings and their parents. Ophthalmologic manifestations, fundus photographs, ultrasonographic (US) assessment, electroretinography (ERG), fluorescein retinal angiography (FA), Goldmann kinetic perimetry (GKP), and optical coherence tomography (OCT), as well as mutational status of MFRP and CHX10 genes in genomic DNA. RESULTS: In all affected siblings, ophthalmologic examination demonstrated normal horizontal corneal diameters and high hyperopia; funduscopy, ERG, and FA evidenced a progressive retinal dystrophy compatible with retinitis pigmentosa; A- and B-mode ultrasonography revealed decreased axial eye length and optic disc drusen; OCT showed localized macular retinoschisis. MFRP molecular analysis disclosed a one base pair insertion in exon 5 (c.498_499insC) in all affected individuals, a mutation that predicts a truncated protein (P165fsX198). Both parents were heterozygous for this mutation. CONCLUSIONS: A distinct autosomal recessive ophthalmic syndrome characterized by microphthalmos, retinitis pigmentosa, foveoschisis, and optic disc drusen is described. We demonstrated that this clinical association is caused by a mutation in MFRP, a gene previously implicated in isolated nanophthalmos. Our data indicate that defects in MFRP could be responsible for syndromic forms of microphthalmos/retinal degeneration and that this gene is necessary for photoreceptor maintenance.  (+info)

Haplotypes in the complement factor H (CFH) gene: associations with drusen and advanced age-related macular degeneration. (8/42)

BACKGROUND: Age-related macular degeneration (AMD), the leading cause of blindness in the Western world, is a complex disease that affects people over 50 years old. The complement factor H (CFH) gene has been repeatedly shown to be a major factor in determining susceptibility to the advanced form of the condition. We aimed to better understand the functional role of this gene in the AMD disease process and assess whether it is associated with earlier forms of the disease. METHODOLOGY/PRINCIPAL FINDINGS: WE genotyped SNPS at the cfh gene locus in three independent populations with AMD: (a) extended families where at least 3 family members had AMD; (b) sporadic cases of advanced AMD and (c) cases from the Age-Related Eye Disease Study (AREDS). We investigated polymorphisms and haplotypes in and around the CFH gene to assess their role in AMD. CFH is associated with early/intermediate and advanced AMD in both familial and sporadic cases. In our populations, the CFH SNP, rs2274700, is most strongly associated with AMD and when incorporated into a haplotype with the Y402H SNP and rs1061147, the strongest association is observed (p<10(-9)). CONCLUSIONS/SIGNIFICANCE: Our results, reproduced in three populations that represent the spectrum of AMD cases, provide evidence that the CFH gene is associated with drusen as well as with advanced AMD. We also identified novel susceptibility and protective haplotypes in the AMD populations.  (+info)