Does gill boundary layer carbonic anhydrase contribute to carbon dioxide excretion: a comparison between dogfish (Squalus acanthias) and rainbow trout (Oncorhynchus mykiss). (1/1227)

In vivo experiments were conducted on spiny dogfish (Squalus acanthias) and rainbow trout (Oncorhynchus mykiss) in sea water to determine the potential role of externally oriented or gill boundary layer carbonic anhydrase in carbon dioxide excretion. This was accomplished by assessing pH changes in expired water using a stopped-flow apparatus. In dogfish, expired water was in acid-base disequilibrium as indicated by a pronounced acidification (delta pH=-0.11+/-0.01; N=22; mean +/- s.e.m.) during the period of stopped flow; inspired water, however, was in acid-base equilibrium (delta pH=-0.002+/-0.01; N=22). The acid-base disequilibrium in expired water was abolished (delta pH=-0.005+/-0.01; N=6) by the addition of bovine carbonic anhydrase (5 mg l-1) to the external medium. Addition of the carbonic anhydrase inhibitor acetazolamide (1 mmol l-1) to the water significantly reduced the magnitude of the pH disequilibrium (from -0.133+/-0.03 to -0.063+/-0.02; N=4). However, after correcting for the increased buffering capacity of the water caused by acetazolamide, the acid-base disequilibrium during stopped flow was unaffected by this treatment (control delta [H+]=99.8+/-22.8 micromol l-1; acetazolamide delta [H+]=81.3+/-21.5 micromol l-1). In rainbow trout, expired water displayed an acid-base disequilibrium (delta pH=0.09+/-0.01; N=6) that also was abolished by the application of external carbonic anhydrase (delta pH=0.02+/-0.01). The origin of the expired water acid-base disequilibrium was investigated further in dogfish. Intravascular injection of acetazolamide (40 mg kg-1) to inhibit internal carbonic anhydrase activity non-specifically and thus CO2 excretion significantly diminished the extent of the expired water disequilibrium pH after 30 min (from -0.123+/-0.01 to -0.065+/-0.01; N=6). Selective inhibition of extracellular carbonic anhydrase activity using a low intravascular dose (1.3 mg kg-1) of the inhibitor benzolamide caused a significant reduction in the acid-base disequilibrium after 5 min (from -0.11+/-0.01 to -0.07+/-0. 01; N=14). These results demonstrate that the expired water acid-base disequilibrium originates, at least in part, from excretory CO2 and that extracellular carbonic anhydrase in dogfish may have a significant role in carbon dioxide excretion. However, externally oriented carbonic anhydrase (if present in dogfish) plays no role in catalysing the hydration of the excretory CO2 in water flowing over the gills and thus is unlikely to facilitate CO2 excretion.  (+info)

Accumulation of astaxanthin all-E, 9Z and 13Z geometrical isomers and 3 and 3' RS optical isomers in rainbow trout (Oncorhynchus mykiss) is selective. (2/1227)

Concentrations of all-E-, 9Z- and 13Z- geometrical and (3R,3'R), (3R, 3'S) and (3S,3'S) optical isomers of astaxanthin were determined in rainbow trout liver, gut tissues, kidney, skin and blood plasma to evaluate their body distribution. Two cold-pelleted diets containing predominantly all-E-astaxanthin (36.9 mg/kg astaxanthin, 97% all-E-, 0.4% 9Z-, 1.5% 13Z-astaxanthin, and 1.1% other isomers, respectively) or a mixture of all-E- and Z-astaxanthins (35.4 mg/kg astaxanthin, 64% all-E-, 18.7% 9Z-, 12.3% 13Z-astaxanthin, and 2.0% other isomers, respectively), were fed to duplicate groups of trout for 69 d. Individual E/Z isomers were identified by VIS- and 1H-NMR-spectrometry, and quantified by high-performance liquid chromatography. Significantly higher total carotenoid concentration was observed in plasma of trout fed diets with all-E-astaxanthin (P < 0.05). The relative E/Z-isomer concentrations of plasma, skin and kidney were not significantly different among groups, whereas all-E-astaxanthin was higher in intestinal tissues and 13Z-astaxanthin was lower in liver of trout fed all-E-astaxanthin (P < 0.05). The relative amount of hepatic 13Z-astaxanthin (39-49% of total astaxanthin) was higher than in all other samples (P < 0.05). Synthetic, optically inactive astaxanthin was used in all experiments, and the determined dietary ratio between the 3R,3'R:3R, 3'S (meso):3S,3'S optical isomers was 25.3:49.6:25.1. The distribution of R/S-astaxanthin isomers in feces, blood, liver and fillet was similar to that in the diets. The ratio between (3S,3'S)- and (3R,3'R)-astaxanthin in the skin and posterior kidney was ca. 2:1 and 3:1, respectively, regardless of dietary E/Z-astaxanthin composition. The results show that geometrical and optical isomers of astaxanthin are distributed selectively in different tissues of rainbow trout.  (+info)

Glucocorticoid receptor immunoreactivity in neurons and pituitary cells implicated in reproductive functions in rainbow trout: a double immunohistochemical study. (3/1227)

In order to identify the nature of the glucocorticoid receptor (GR)-expressing neurons and pituitary cells that potentially mediate the negative effects of stress on reproductive performance, double immunohistochemical stainings were performed in the brain and pituitary of the rainbow trout (Oncorhynchus mykiss). To avoid possible cross-reactions during the double staining studies, combinations of primary antibodies raised in different species were used, and we report here the generation of an antibody raised in guinea pig against the rainbow trout glucocorticoid receptor (rtGR). The results obtained in vitellogenic females showed that GnRH-positive neurons in the caudal telencephalon/anterior preoptic region consistently exhibited rtGR immunoreactivity. Similarly, in the anterior ventral preoptic region, a group of tyrosine hydroxylase-positive neurons, known for inhibiting gonadotropin (GTH)-2 secretion during vitellogenesis, was consistently shown to strongly express GR. Finally, we show that a large majority of the GTH-1 (FSH-like) and GTH-2 (LH-like) cells of the pituitary exhibit rtGR immunoreactivity. These results indicate that cortisol may affect the neuroendocrine control of the reproductive process of the rainbow trout at multiple sites.  (+info)

Two distinct isoforms of cDNA encoding rainbow trout androgen receptors. (4/1227)

Androgens play an important role in male sexual differentiation and development. The activity of androgens is mediated by an androgen receptor (AR), which binds to specific DNA recognition sites and regulates transcription. We describe here the isolation of two distinct rainbow trout cDNA clones, designated rtAR-alpha and rtAR-beta, which contain the entire androgen receptor coding region. Comparison of the predicted amino acid sequence of rtAR-alpha to that of rtAR-beta revealed 85% identity. Interestingly, despite this high homology, rtAR-alpha activated transcription of an androgen-responsive reporter gene in co-transfection assays, but rtAR-beta did not. These results suggest that rainbow trout contains two distinct isoforms of androgen receptors whose functions differ. The region of rtAR-beta responsible for its inactivity was mapped to its ligand binding domain by analyzing chimeras of the rtAR-alpha, rtAR-beta, and rtGR-I (glucocorticoid) receptors. Alteration of any one of three out of four segments within this domain restored activity. Extracts made from COS-1 cells transfected with an rtAR-alpha expression plasmid produced a high level of [3H]mibolerone binding, whereas no binding was observed by extracts of cells transfected with an rtAR-beta expression plasmid. These data demonstrate that the lack of transactivation activity of rtAR-beta is due to its inability to bind hormone.  (+info)

2,3,7,8-Tetrachlorodibenzo-p-dioxin alters cardiovascular and craniofacial development and function in sac fry of rainbow trout (Oncorhynchus mykiss). (5/1227)

Hallmark signs of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity in rainbow trout sac fry, are yolk sac edema, hemorrhage, craniofacial malformation, and growth retardation culminating in mortality. Our objective was to determine the role of cardiovascular dysfunction in the development of this toxicity. An embryotoxic TCDD dose (385 pg/g egg) caused a progressive reduction in blood flow in rainbow trout sac fry manifested first and most dramatically in the 1st and 2nd branchial arches and vessels perfusing the lower jaw. Blood flow was reduced later in the infraorbital artery and occipital vein of the head as well as segmental vessels and caudal vein of the trunk. Reduced perfusion occurred last in gill branchial arteries involved with oxygen uptake and the subintestinal vein and vitelline vein involved with nutrient uptake. Although heart rate throughout sac fry development was not affected, heart size at 50 days post-fertilization (dpf) was reduced far more than body weight or length, suggesting that the progressive circulatory failure caused by TCDD is associated with reduced cardiac output. Craniofacial development was arrested near hatch, giving rise to craniofacial malformations in which the jaws and anterior nasal structures were underdeveloped. Unlike the medaka embryo, in which TCDD causes apoptosis in the medial yolk vein, endothelial cell death was not observed in rainbow trout sac fry. These findings suggest a primary role for arrested heart development and reduced perfusion of tissues with blood in the early-life stage toxicity of TCDD in trout.  (+info)

Inhibition of vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish. (6/1227)

To study the possible use of probiotics in fish farming, we evaluated the in vitro and in vivo antagonism of antibacterial strain Pseudomonas fluorescens strain AH2 against the fish-pathogenic bacterium Vibrio anguillarum. As iron is important in virulence and bacterial interactions, the effect of P. fluorescens AH2 was studied under iron-rich and iron-limited conditions. Sterile-filtered culture supernatants from iron-limited P. fluorescens AH2 inhibited the growth of V. anguillarum, whereas sterile-filtered supernatants from iron-replete cultures of P. fluorescens AH2 did not. P. fluorescens AH2 inhibited the growth of V. anguillarum during coculture, independently of the iron concentration, when the initial count of the antagonist was 100 to 1, 000 times greater that of the fish pathogen. These in vitro results were successfully repeated in vivo. A probiotic effect in vivo was tested by exposing rainbow trout (Oncorynchus mykiss Walbaum) to P. fluorescens AH2 at a density of 10(5) CFU/ml for 5 days before a challenge with V. anguillarum at 10(4) to 10(5) CFU/ml for 1 h. Some fish were also exposed to P. fluorescens AH2 at 10(7) CFU/ml during the 1-h infection. The combined probiotic treatment resulted in a 46% reduction of calculated accumulated mortality; accumulated mortality was 25% after 7 days at 12 degrees C in the probiotic-treated fish, whereas mortality was 47% in fish not treated with the probiont.  (+info)

Effect of prostanoids and their precursors on the aggregation of rainbow trout thrombocytes. (7/1227)

The role of prostanoids and their precursor fatty acids in the aggregatory response of thrombocytes (platelet equivalents of fish) from the rainbow trout, Oncorhynchus mykiss, was studied. Aggregation of these cells was induced by the thromboxane mimetic U-46619 or arachidonic acid (AA) in the presence of human or trout fibrinogen. The production of TXB2/3 by thrombocytes in response to stimulation with AA was inhibited by aspirin, ibuprofen, and indomethacin. However, thrombocyte aggregation in response to AA stimulation was not significantly altered by these agents at the concentrations tested (10-100 microM), with the exception of indomethacin at 20 and 40 microM. Effects on cytosolic calcium concentration have been suggested as an alternative mechanism for the inhibitory action of indomethacin on human platelet aggregation. The present study, however, failed to identify this as a mechanism for the inhibition of U-46619-induced trout thrombocyte aggregation by indomethacin. The polyunsaturated fatty acids docosahexaenoic acid and eicosapentaenoic acid both exhibited an inhibitory effect on U-46619-induced thrombocyte aggregation similar to that observed with mammalian platelets. Unlike the case in mammalian hemostasis, prostacyclin inhibited thrombocyte aggregation only at high concentrations (>5 microM). Prostaglandin E2, however, inhibited thrombocyte aggregation at much lower concentrations (>0.01 microM), suggesting that it may be the major inhibitory eicosanoid in trout.  (+info)

Whirling disease: host specificity and interaction between the actinosporean stage of Myxobolus cerebralis and rainbow trout Oncorhynchus mykiss. (8/1227)

Scanning electron microscopic studies were conducted on rainbow trout Oncorhynchus mykiss in the first 60 min after their exposure to the triactinomyxon spores of Myxobolus cerebralis. The results demonstrated that as early as 1 min post exposure the whole process, from the attachment of the triactinomyxon spores to the complete penetration of their sporoplasm germs, had occurred. The triactinomyxon spores sought out the secretory openings of mucous cells of the epidermis, the respiratory epithelium and the buccal cavity of trout and used them as portals of entry. Exposure experiments of the triactinomyxon spores of M. cerebralis to non-salmonid fish, such as goldfish Carassius auratus, carp Cyprinus carpio, nose Chondrostoma nasus, medaka Oryzias latipes, guppy Poecilia reticulata and also the amphibian tadpole Rana pipiens as well as to rainbow trout fry indicated a specificity for salmonids. Attempts to activate the triactinomyxon spores by exposure to mucus prepared from cyprinid and salmonid fish showed no significant differences from those conducted in tap water. The results suggest that the simultaneous presence of both mechano- and chemotactic stimuli was required for finding the salmonid fish host.  (+info)