Combination effect of oncolytic adenovirotherapy and TRAIL gene therapy in syngeneic murine breast cancer models. (1/727)

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene therapy and oncolytic adenovirotherapy have been investigated extensively in xenografic human tumor models established in immunocompromised nude mice. However, the effects of these therapies on syngeneic murine tumors in immunocompetent settings were not well documented. We hypothesized that TRAIL gene therapy used with an oncolytic adenovirus would overcome the weaknesses of the two therapies used individually. In this study, we evaluated the antitumor effects of an oncolytic adenovirus, Delta24, in both human and murine breast cancer cell lines. We also analyzed the effects of TRAIL gene therapy combined with oncolytic virotherapy in these cancer cells. Our results showed that Delta24 can replicate and help the E1-deleted adenovector replicate in murine cancer cells. We also found that these two therapies combined had greater antitumor activity than either one alone in both human and murine breast cancer cells lines and in the syngeneic breast cancer models established in immunocompetent mice. Moreover, Delta24 virotherapy alone and combined with TRAIL gene therapy dramatically reduced the spontaneous liver metastasis that originated in the subcutaneous 4T1 tumor established in Balb/c mice. These findings provide important considerations in the development and preclinical assessments of oncolytic virotherapy.  (+info)

Radiation therapy potentiates effective oncolytic viral therapy in the treatment of lung cancer. (2/727)

BACKGROUND: Replication-competent oncolytic herpes simplex viruses with deletion of the gamma(1)34.5 gene preferentially replicate in and kill malignant cells. The gamma(1)34.5 gene codes for ICP 34.5, a protein that enhances viral replication, and is homologous to growth arrest and DNA damage protein 34 (GADD34), a radiation-inducible DNA repair gene. We hypothesized that radiation therapy may potentiate efficacy of oncolytic viral therapy by upregulating GADD34 and promoting viral replication. METHODS: The A549 and H1299 lung cancer cell lines were infected with NV1066, an oncolytic herpes simplex virus, at multiplicities of infection (number of viral particles per tumor cell) of 0.1 to 0.5 in vitro with radiation (2 to 10 Gy) or without radiation. Viral replication was determined by plaque assay, cell-to-cell spread was determined by flow cytometry, cell kill was determined by lactate dehydrogenase assay, and GADD34 induction was determined by real-time reverse transcription-polymerase chain reaction and Western blot method. Evidence of synergistic cytotoxicity dependence with GADD34 induction is further confirmed by small inhibitory RNA inhibition of GADD34 expression. RESULTS: Using both the isobologram method and combination index method of Chou and Talalay, significant synergism was demonstrated between radiation therapy and NV1066 both in vitro and in vivo. As a result of such synergism, a dose reduction for each agent (2- to 6,000-fold) can be accomplished for a wide range of therapeutic effect levels without sacrificing tumor cell kill. This effect is correlated with increased GADD34 expression and inhibited by transfection of small inhibitory RNA directed against GADD34. CONCLUSIONS: These data provide the cellular basis for the clinical investigation of combined use of radiation therapy with oncolytic herpes simplex virus therapy in the treatment of lung cancer to achieve synergistic efficacy while minimizing dosage and toxicity.  (+info)

Myxoma virus is a novel oncolytic virus with significant antitumor activity against experimental human gliomas. (3/727)

Myxoma virus, a poxvirus previously considered rabbit specific, can replicate productively in a variety of human tumor cells in culture. The purpose of this study was to determine if there was efficacy or toxicities of this oncolytic virus against experimental models of human malignant gliomas in vitro, in vivo, and ex vivo in malignant glioma specimens. In vitro, the majority of glioma cell lines tested (7 of 8, 87.5%) were fully permissive for myxoma virus replication and killed by infection. In vivo, intracerebral (i.c.) myxoma virus inoculation was well tolerated and produced only minimal focal inflammatory changes at the site of viral inoculation. U87 and U251 orthotopic xenograft models were used to assess myxoma virus efficacy in vivo. A single intratumoral injection of myxoma virus dramatically prolonged median survival compared with treatment with UV-inactivated myxoma virus. Median survival was not reached in myxoma virus-treated groups versus 47.3 days (U87; P = 0.0002) and 50.7 days (U251; P = 0.0027) in UV-inactivated myxoma virus-treated groups. Most myxoma virus-treated animals (12 of 13, 92%) were alive and apparently "cured" when the experiment was finished (>130 days). Interestingly, we found a selective and long-lived myxoma virus infection in gliomas in vivo. This is the first demonstration of the oncolytic activity of myxoma virus in vivo. The nonpathogenic nature of myxoma virus outside of the rabbit host, its capacity to be genetically modified, its ability to produce a long-lived infection in human tumor cells, and the lack of preexisting antibodies in the human population suggest that myxoma virus may be an attractive oncolytic agent against human malignant glioma.  (+info)

The enhanced tumor selectivity of an oncolytic vaccinia lacking the host range and antiapoptosis genes SPI-1 and SPI-2. (4/727)

The ability of cancer cells to evade apoptosis may permit survival of a recombinant vaccinia lacking antiapoptotic genes in cancer cells compared with normal cells. We have explored the deletion of two vaccinia virus host range/antiapoptosis genes, SPI-1 and SPI-2, for their effects on the viral replication and their ability to induce cell death in infected normal and transformed cells in vitro. Indeed, in three paired normal and transformed cell types, the SPI-1 and SPI-2 gene-deleted virus (vSP) preferentially replicates in transformed cells or p53-null cells when compared with their normal counterparts. This selectivity may be derived from the fact that vSP-infected normal cells died faster than infected cancer cells. A fraction of infected cells died with evidence of necrosis as shown by both flow cytometry and detection of high-mobility group B1 protein released from necrotic cells into the culture supernatant. When administered to animals, vSP retains full ability to replicate in tumor tissues, whereas replication in normal tissues is greatly diminished. In a model of viral pathogenesis, mice treated with vSP survived substantially longer when compared with mice treated with the wild-type virus. The mutant virus vSP displayed significant antitumoral effects in an MC38 s.c. tumor model in both nude (P < 0.001) and immunocompetent mice (P < 0.05). We conclude that this recombinant vaccinia vSP shows promise for oncolytic virus therapy. Given its enhanced tumor selectivity, improved safety profile, and substantial oncolytic effects following systemic delivery in murine models, it should also serve as a useful vector for tumor-directed gene therapy.  (+info)

Cisplatin-induced GADD34 upregulation potentiates oncolytic viral therapy in the treatment of malignant pleural mesothelioma. (5/727)

BACKGROUND: NV1066, a replication-competent oncolytic herpes simplex virus type 1 (HSV-1) attenuated by a deletion in the gene gamma(1)34.5, preferentially replicates in and kills malignant cells. gamma(1)34.5 encodes ICP34.5, a viral protein essential for productive replication, which has homology with mammalian stress response induced GADD34 (growth arrest and DNA damage-inducible protein). We hypothesized that cisplatin upregulates GADD34 expression, which enhances NV1066 replication and oncolysis. METHODS: Ten human malignant pleural mesothelioma (MPM) cell lines were infected with NV1066 at multiplicities of infection (MOI; ratio of viral particles per tumor cell) 0.005 to 0.8 in vitro, with and without cisplatin (1 to 4 microM). In the MPM cell line VAMT, viral replication was determined by plaque assay, cell kill by lactate dehydrogenase assay, and GADD34 induction by quantitative RT-PCR and Western blot. Synergistic efficacy was confirmed by the isobologram and combination index methods of Chou-Talalay. GADD34 upregulation by cisplatin was inhibited with GADD34 siRNA to further confirm the synergistic efficacy dependence with GADD34. RESULTS: Combination therapy with NV1066 and cisplatin showed strong synergism in epithelioid (H-2452, H-Meso), sarcomatoid (H-2373, H-28), and biphasic (JMN, Meso-9, MSTO-211H) MPM cell lines, and an additive effect in others. In VAMT cells combination therapy enhanced viral replication 4 to 11-fold (p < 0.01) and cell kill 2 to 3-fold (p < 0.01). Significant dose reductions for both agents (2 to 600-fold) were achieved over a wide range of therapeutic-effect levels (LD50-LD99) without compromising cell kill. Synergistic cytotoxicity correlated with GADD34 upregulation (2 to 4-fold, p < 0.01) and was eliminated following transfection with GADD34 siRNA. CONCLUSION: Cisplatin-induced GADD34 expression selectively enhanced the cytotoxicity of the gamma(1)34.5-deficient oncolytic virus, NV1066. This provides a cellular basis for combination therapy with cisplatin and NV1066 to treat MPM and achieve synergistic efficacy, while minimizing dosage and toxicity.  (+info)

Triple gene-deleted oncolytic herpes simplex virus vector double-armed with interleukin 18 and soluble B7-1 constructed by bacterial artificial chromosome-mediated system. (6/727)

Conditionally replicating herpes simplex virus type 1 (HSV-1) vectors are promising therapeutic agents for cancer. Certain antitumor functions may be added to oncolytic activities of recombinant HSV-1 vectors by inserting transgenes into the viral genome. Because conventional homologous recombination techniques had required time-consuming processes to create "armed" oncolytic HSV-1 vectors, we established an innovative construction system using bacterial artificial chromosome and two recombinase systems (Cre/loxP and FLPe/FRT). Using G47Delta, a safe and efficacious oncolytic HSV-1 with triple gene mutations, as the backbone, this system allowed a rapid generation of multiple vectors with desired transgenes inserted in the deleted ICP6 locus. Four oncolytic HSV-1 vectors, expressing murine interleukin 18 (mIL-18), soluble murine B7-1 [B7-1-immunoglobulin (B7-1-Ig)], both, or none, were created simultaneously within 3 months. In vitro, all newly created recombinant vectors exhibited virus yields and cytopathic effects similar to the parental G47Delta. In two immunocompetent mouse tumor models, TRAMP-C2 prostate cancer and Neuro2a neuroblastoma, the vector expressing both mIL-18 and B7-1-Ig showed a significant enhancement of antitumor efficacy via T-cell-mediated immune responses. The results show that "arming" with multiple transgenes can improve the efficacy of oncolytic HSV-1 vectors. The use of our system may facilitate the development and testing of various armed oncolytic HSV-1 vectors.  (+info)

CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor--armed oncolytic adenovirus for the treatment of bladder cancer. (7/727)

PURPOSE: The purpose of this study was to examine the tumor specificity, cytotoxicity, and granulocyte macrophage colony-stimulating factor expression of CG0070, a conditionally replicating oncolytic adenovirus, in human bladder transitional cell carcinoma (TCC) cell lines and determine its antitumor efficacy in bladder TCC tumor models. EXPERIMENTAL DESIGN: Virus yield and cytotoxicity assays were used to determine tumor specificity and virus replication-mediated cytotoxicity of CG0070 in a panel of human bladder TCC cell lines and primary cells in vitro. Two s.c. and one orthotopic bladder TCC xenograft tumor models were used to assess antitumor activity of CG0070. RESULTS: In a matched isogenic pair of cell lines with differing retinoblastoma (Rb) pathway status, CG0070 showed selective E1a and granulocyte macrophage colony-stimulating factor (GM-CSF) expression in Rb pathway-defective cells. CG0070 replicated in Rb-defective bladder TCC cell lines as efficiently as wild-type adenovirus but produced 100-fold less virus in normal human cells. CG0070 was up to 1,000-fold more cytotoxic in Rb pathway-defective bladder TCC cells in comparison with normal human cells. Antitumor activity of CG0070 was shown in two bladder TCC s.c. xenograft tumor models following intratumoral injections and intravesical treatment in an orthotopic xenograft tumor model when compared with PBS treatment. CONCLUSIONS: In vitro and in vivo studies showed the selective replication, cytotoxicity, GM-CSF production, and antitumor efficacy of CG0070 in several bladder TCC models, suggesting a potential utility of this oncolytic agent for the treatment of bladder cancer. Further studies are warranted to show the role of human GM-CSF in the antitumor efficacy of CG0070.  (+info)

Activated MEK suppresses activation of PKR and enables efficient replication and in vivo oncolysis by Deltagamma(1)34.5 mutants of herpes simplex virus 1. (8/727)

Herpes simplex virus mutants lacking the gamma(1)34.5 gene are not destructive to normal tissues but are potent cytolytic agents in human tumor cells in which the activation of double-stranded RNA-dependent protein kinase (PKR) is suppressed. Thus, replication of a Deltagamma(1)34.5 mutant (R3616) in 12 genetically defined cancer cell lines correlates with suppression of PKR but not with the genotype of RAS. Extensive analyses of two cell lines transduced with either dominant negative MEK (dnMEK) or constitutively active MEK (caMEK) indicated that in R3616 mutant-infected cells dnMEK enabled PKR activation and decreased virus yields, whereas caMEK suppressed PKR and enabled better viral replication and cell destruction in transduced cells in vitro or in mouse xenografts. The results indicate that activated MEK mediates the suppression of PKR and that the status of MEK predicts the ability of Deltagamma(1)34.5 mutant viruses to replicate in and destroy tumor cells.  (+info)