Intracellular signaling of gp34, the OX40 ligand: induction of c-jun and c-fos mRNA expression through gp34 upon binding of its receptor, OX40. (1/103)

We investigated the intracellular signaling events of OX40 ligand (gp34), a member of the TNF family. To elucidate the intracellular signaling via gp34, we prepared a model system in which a human gp34-transfected mouse epithelial cell line was stimulated with a recombinant soluble form of OX40. We demonstrated that OX40 binding resulted in increase in c-jun and c-fos mRNA levels in this transfectant by Northern blot analysis, which was blocked by the pretreatment with anti-gp34 Ab. The studies with various gp34 deletion mutants showed that the cytoplasmic portion including the amino acid sequence 16-21 (RPRFER) was required for the induction of c-jun and c-fos mRNA expression. Furthermore, OX40 binding induced c-jun mRNA expression also in HUVECs, which in our previous study have been shown to express gp34 and interact with activated T cells through the OX40/gp34 pathway. On the other hand, c-fos mRNA was detectable neither in unstimulated HUVECs nor in gp34-stimulated HUVECs. These results indicate that the OX40/gp34 system generates two-way signals and may elicit biological effects on vascular endothelial cells.  (+info)

Expression of lymphocyte-endothelial receptor-ligand pairs, alpha4beta7/MAdCAM-1 and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease. (2/103)

BACKGROUND: The interaction between leucocytes and vascular endothelial cells is essential for leucocyte migration into inflammatory sites. AIMS: To study the local expression of the pairs of complementary molecules, alpha4beta7/mucosal addressin cell adhesion molecule (MAdCAM-1) and OX40/OX40 ligand in the lamina propria of the colon and jejunum of patients with inflammatory bowel disease. METHODS: Ten patients with active ulcerative colitis (UC), nine with active Crohn's disease (CD), and seven irritable bowel syndrome (IBS) controls were submitted to endoscopic and peroral jejunal biopsies. Specimens were immunostained by indirect alkaline phosphatase using antibodies against CD3, intercellular adhesion molecule (ICAM) 1, alpha4beta7, MAdCAM-1, and OX40. An OX40-mouse-IgG fusion protein was used to detect OX40 ligand on frozen sections. Immunohistological analysis was carried out by optical microscopy using a computer assisted image analyser. RESULTS: Colonic lamina propria of patients with CD and UC showed increased density of CD3+, alpha4beta7+, and OX40+ cells compared with IBS controls. ICAM-1, MAdCAM-1, and OX40 ligand positive vessels were also increased compared with IBS controls. No significant difference was found in the density of any of these cells in the jejunal mucosa of patients compared with IBS controls. CONCLUSIONS: The expression of MAdCAM-1 and OX40 ligand on gut endothelial and OX40+ cells is increased in sites of mucosal inflammation in patients with inflammatory bowel disease. No evidence was found for increased lamina propria T cells or increased vascular adhesion molecule expression in the proximal intestine of patients with distal inflammatory bowel disease.  (+info)

Human monocyte-derived dendritic cells induce naive T cell differentiation into T helper cell type 2 (Th2) or Th1/Th2 effectors. Role of stimulator/responder ratio. (3/103)

The subset of dendritic cells (DCs) and the nature of the signal inducing DC maturation determine the capacity of DCs to generate polarized immune responses. In this study, we show that the ability of human monocyte-derived DCs (myeloid DC(1)) to promote T helper type 1 (Th1) or Th2 differentiation was also found to be critically dependent on stimulator/responder ratio. At a low ratio (1:300), mature DCs that have been differentiated after inflammatory (Staphylococcus aureus Cowan 1 or lipopolysaccharide) or T cell-dependent (CD40 ligand) stimulation induced naive T cells to become Th2 (interleukin [IL]-4(+), IL-5(+), interferon gamma) effectors. Th2 differentiation was dependent on B7-CD28 costimulation and enhanced by OX40-OX40 ligand interactions. However, high DC/T cell ratio (1:4) favored a mixed Th1/Th2 cell development. Thus, the fact that the same DC lineage stimulates polarized Th1 or Th2 responses may be relevant since it allows the antigen-presenting cells to initiate an appropriate response for the signal received at the peripheral sites. Controlling the number and the rate of DC migration to the T cell areas in lymphoid tissues may be important for the therapeutic use of DCs.  (+info)

New variations in human OX40 ligand (CD134L) gene. (4/103)

We found three new variations in the OX40 ligand (OX40L, CD134L) gene and its 5' upstream region. -921 (G-->A) at 5' upstream region, -19 (C-->G) at 5' untranslated region, and 202 + 25 (G-->T) at intron 2 were identified. -921 (G-->A) and 202 + 25 (G-->T) were detected in a substantial proportion of healthy Japanese individuals and were considered to be single nucleotide polymorphisms (SNPs). -19 (C-->G) was detected in only one healthy individual. There was no association between these variations and the presence of rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE).  (+info)

OX40 stimulation by gp34/OX40 ligand enhances productive human immunodeficiency virus type 1 infection. (5/103)

OX40 is a member of the tumor necrosis factor (TNF) receptor superfamily and known to be an important costimulatory molecule expressed on activated T cells. To investigate the role of costimulation of OX40 in human immunodeficiency virus type 1 (HIV-1) infection by its natural ligand, gp34, the OX40-transfected ACH-2 cell line, ACH-2/OX40, chronically infected with HIV-1, was cocultured with paraformaldehyde (PFA)-fixed gp34-transfected mouse cell line, SV-T2/gp34. The results showed that HIV-1 production was strongly induced. This was followed by apparent apoptosis, and both processes were specifically inhibited by the gp34-specific neutralizing monoclonal antibody 5A8. Endogenous TNF alpha (TNF-alpha) and TNF-beta production were not involved in the enhanced HIV-1 production. Furthermore, enhanced HIV-1 transcription in gp34-stimulated ACH-2/OX40 cells was dependent on the kappa B site of the HIV-1 long terminal repeat, and the OX40-gp34 interaction activated NF-kappa B consisting of p50 and p65 subunits. When primary activated CD4(+) T cells acutely infected with HIV-1(NL4-3) (CXCR4-using T-cell-line-tropic) were cocultured with PFA-fixed gp34(+) human T-cell leukemia virus type 1-bearing MT-2 cells or SV-T2/gp34 cells, HIV-1 production was also markedly enhanced. The enhancement was again significantly inhibited by 5A8. The present study first shows that OX40-gp34 interaction stimulates HIV-1 expression and suggests that OX40 triggering by gp34 may play an important role in enhancing HIV-1 production in both acutely and latently infected CD4(+) T cells in vivo.  (+info)

Functional CD4 T cells after intercellular molecular transfer of 0X40 ligand. (6/103)

OX40/OX40 ligand (OX40L) proteins play critical roles in the T cell-B cell and T cell-dendritic cell interactions. Here we describe the intercellular transfer of OX40L molecules by a non-Ag specific manner. After 2-h coculture of activated CD4(+) T cell (OX40L(-), OX40(+)) with FLAG peptide-tagged OX40L (OX40L-flag) protein-expressing COS-1 cells, the OX40L-flag protein was detected on the cell surface of the CD4(+) T cells by both anti-OX40L and anti-FLAG mAbs. The intercellular OX40L transfer was specifically abrogated by pretreatment of the COS-1 cells with anti-OX40L mAb, 5A8. The OX40L transfer to OX40-negative cells was also observed, indicating an OX40-independent pathway of OX40L transfer. HUVECs, allostimulated monocytes, and human T cell leukemia virus type I-infected T cells, which all express OX40L, can potentially act as the donor cells of OX40L. The entire molecule of OX40L was transferred and stabilized on the recipient cell membrane with discrete punctate formation. The transferred OX40L on normal CD4(+) T cells was functionally active as they stimulated latent HIV-1-infected cells to produce viral proteins via OX40 signaling. Therefore, these findings suggest that the intercellular molecular transfer of functional OX40L may be involved in modifying the immune responses.  (+info)

Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse th cell-polarizing signals. (7/103)

Upon microbial infection, specific Th1 or Th2 responses develop depending on the type of microbe. Here, we demonstrate that different microbial compounds polarize the maturation of human myeloid dendritic cells (DCs) into stably committed Th1 cell-promoting (DC1) or Th2 cell-promoting (DC2) effector DCs that polarize Th cells via different mechanisms. Protein extract derived from the helminth Schistosoma mansoni induced the development of DC2s that promote the development of Th2 cells via the enhanced expression of OX40 ligand. Likewise, toxin from the extracellular bacterium Vibrio cholerae induced development of DC2s as well, however, via an OX40 ligand-independent, still unknown mechanism. In contrast, toxin from the intracellular bacterium Bordetella pertussis induced the development of DC1s with enhanced IL-12 production, which promotes a Th1 cell development. Poly(I:C) (dsRNA, mimic for virus) induced the development of extremely potent Th1-inducing DC1, surprisingly, without an enhanced IL-12 production. The obtained DC1s and DC2s are genuine effector cells that stably express Th cell-polarizing factors and are unresponsive to further modulation. The data suggest that the molecular basis of Th1/Th2 polarization via DCs is unexpectedly diverse and is adapted to the nature of the microbial compounds.  (+info)

Costimulation through OX40 is crucial for induction of an alloreactive human T-cell response. (8/103)

The alloreactive immune response is a series of events initiated by the interaction of T cells with allogeneic dendritic cells (DCs), involving alloantigen recognition and costimulatory signals. In this study, we investigated the role of OX40 in alloreactivity in vitro. We first demonstrated that anti-OX40 ligand (anti-OX40L) monoclonal antibody (mAb) could markedly suppress the mixed leucocyte reaction (MLR) of peripheral blood mononuclear cells (PBMC). To further define the contribution of the OX40/OX40L system to the MLR, we set up a co-culture system of CD4+ T cells and allogeneic monocyte-derived dendritic cells (DCs). After 2 days, OX40 expression was induced on CD4+ T cells and this induction was strongly inhibited by the addition of cytotoxic T lymphocyte-associated antigen-4 (CTLA-4)-Fc fusion protein, suggesting that the expression of OX40 during alloreaction is dependent on CD28 signalling. Next we examined the effects of anti-OX40L mAb, CTLA-4-Fc fusion protein and anti-human leucocyte antigen (HLA)-DR mAb on the proliferative response of CD4+ T cells to allogeneic DCs. The proliferation of T cells was almost completely suppressed by anti-OX40L mAb, which was comparable with that of CTLA-4-Fc. Measurement of interleukin-2 (IL-2) production in the culture supernatants showed that suppression of a proliferative response was at least in part ascribed to reduced IL-2 production. Furthermore, purified OX40L- allogeneic DCs could induce considerable proliferation of CD4+ T cells, which was suppressed by anti-OX40L mAb. These results suggest that the OX40/OX40L system is crucial for induction of the allogeneic T-cell response and the OX40/OX40L system is subsequent to and dependent on CD28 signalling, but is crucial for the end outcome of the human alloreactive T-cell response.  (+info)